
Kernel density estimators 
 

One Dimension 
 
From the definition of a probability density, if the random variable 𝑋𝑋 has a density 𝑓𝑓 

𝑓𝑓(𝑥𝑥) = lim
h→0

1
2ℎ

 P(𝑥𝑥 − ℎ < 𝑋𝑋 < 𝑥𝑥 + ℎ). 

For any given ℎ, a naive estimator of P(𝑥𝑥 − ℎ < 𝑋𝑋 < 𝑥𝑥 + ℎ) is the proportion of the observations 
𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 falling in the interval (𝑥𝑥 − ℎ, 𝑥𝑥 + ℎ), 

𝑓𝑓(𝑥𝑥) = 1
2𝑛𝑛ℎ

 ∑ 𝐼𝐼(𝑥𝑥𝑖𝑖 ∈ (𝑥𝑥 − ℎ, 𝑥𝑥 + ℎ))𝑛𝑛
𝑖𝑖=1 ; 

i.e., the number of 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 falling in the interval (𝑥𝑥 − ℎ, 𝑥𝑥 + ℎ) divided by 2𝑛𝑛ℎ. If we introduce 
a weight function 𝑊𝑊 given by 

𝑊𝑊(𝑥𝑥) = �
1
2

|𝑥𝑥| < 1
0 𝑜𝑜.𝑤𝑤.

, 

Then the naive estimator can be written as 
𝑓𝑓(𝑥𝑥) = 1

2𝑛𝑛
 ∑ 1

ℎ
 𝑊𝑊�𝑥𝑥−𝑥𝑥𝑖𝑖

ℎ
�𝑛𝑛

𝑖𝑖=1 . 
 
Unfortunately, this estimator is not a continues function and is not particularly satisfactory for 
practical density estimation. It does, however, lead naturally to the kernel estimator defined by 

𝑓𝑓(𝑥𝑥) = 1
𝑛𝑛ℎ

 ∑ 𝐾𝐾 �𝑥𝑥−𝑥𝑥𝑖𝑖
ℎ
�𝑛𝑛

𝑖𝑖=1 = 1
𝑛𝑛ℎ

 ∑ 𝐾𝐾ℎ(𝑥𝑥 − 𝑥𝑥𝑖𝑖)𝑛𝑛
𝑖𝑖=1 , 

where 𝐾𝐾 is known as the kernel function and ℎ is the bandwidth or smoothing parameter.  
In Statistics, a kernel is a non-negative real-valued integrable function satisfying 
∫ 𝐾𝐾(𝑥𝑥)𝑑𝑑𝑥𝑥 = 1∞
−∞ . 

Usually, but not always, the kernel function will be a symmetric density function; 
for example, the normal. 
In order to compute the MSE of the estimate of 𝑓𝑓(. ), we need the bias and variance of 𝑓𝑓(. ). Let 
𝑋𝑋 be a random variable having density 𝑓𝑓(. ). Then we have for the specific point 𝑥𝑥 ∈ ℝ we have 
 

𝐸𝐸�𝑓𝑓(𝑥𝑥)� = 𝐸𝐸[𝐾𝐾ℎ(𝑥𝑥 − 𝑋𝑋)] = ∫𝐾𝐾ℎ(𝑥𝑥 − 𝑦𝑦)𝑓𝑓(𝑦𝑦)𝑑𝑑𝑦𝑦 = ∫𝐾𝐾(𝑧𝑧)𝑓𝑓(𝑥𝑥 − ℎ𝑧𝑧)𝑑𝑑𝑧𝑧. 
 

Expanding 𝑓𝑓(𝑥𝑥 − ℎ𝑧𝑧) in a Taylor series about 𝑥𝑥 we obtain 

𝑓𝑓(𝑥𝑥 − ℎ𝑧𝑧) = 𝑓𝑓(𝑥𝑥) − ℎ𝑧𝑧𝑓𝑓′(𝑥𝑥) +
1
2

 ℎ2𝑧𝑧2𝑓𝑓′′(𝑥𝑥) + 𝑜𝑜(ℎ2) 

uniformly in 𝑧𝑧. This leads to  

𝐸𝐸�𝑓𝑓(𝑥𝑥)� = 𝑓𝑓(𝑥𝑥) +
1
2

 ℎ2𝑓𝑓′′(𝑥𝑥)�𝑧𝑧2𝐾𝐾(𝑧𝑧)𝑑𝑑𝑧𝑧 + 𝑜𝑜(ℎ2) 

where we have used  
∫𝐾𝐾(𝑧𝑧)𝑑𝑑𝑧𝑧 = 1,                   ∫ 𝑧𝑧𝐾𝐾(𝑧𝑧)𝑑𝑑𝑧𝑧 = 0,                            ∫ 𝑧𝑧2𝐾𝐾(𝑧𝑧)𝑑𝑑𝑧𝑧 = 𝜎𝜎𝐾𝐾2 < ∞. 

 



Three commonly used kernel functions are 
 

1. rectangular, 

                      𝐾𝐾(𝑥𝑥) = �
1
2

|𝑥𝑥| < 1
0 𝑜𝑜.𝑤𝑤.

= 1
2

 1{|𝑥𝑥|<1}, 

 
2. triangular, 

                      𝐾𝐾(𝑥𝑥) = �1 − |𝑥𝑥| |𝑥𝑥| < 1
0 𝑜𝑜.𝑤𝑤.

= (1 − |𝑥𝑥|)1{|𝑥𝑥|<1}, 

 
3. Gaussian, 

                      𝐾𝐾(𝑥𝑥) = 1
√2𝜋𝜋

 𝑒𝑒−
1
2 𝑥𝑥2. 

 
The three kernel functions are implemented in R as shown in Figure 2.12. For some grid 𝑥𝑥, the 
kernel functions are plotted using the R statements in Figure 2.12. The kernel estimator 𝑓𝑓 is a 
sum of “bumps” placed at the observations. The kernel function determines the shape of the 
bumps, while the window width ℎ determines their width. Figure 2.13 shows the individual 
bumps 𝑛𝑛−1ℎ−1𝐾𝐾 �𝑥𝑥−𝑥𝑥𝑖𝑖

ℎ
� as well as the estimate 𝑓𝑓 obtained by adding them up for an artificial set 

of data points, 
 
 
 
rec <- function(x) (abs(x) < 1) * 0.5 
tri <- function(x) (abs(x) < 1) * (1 - abs(x)) 
gauss <- function(x) 1/sqrt(2*pi) * exp(-(x^2)/2) 
x <- seq(from = -3, to = 3, by = 0.001) 
plot(x, rec(x), type = "l", ylim = c(0,1), lty = 1, ylab = expression(K(x))) 
lines(x, tri(x), lty = 2) 
lines(x, gauss(x), lty = 3) 
legend("topleft", legend = c("Rectangular", "Triangular", "Gaussian"), lty = 1:3, 
title = "kernel functions", bty = "n") 



 
Fig. 2.12. Three commonly used kernel functions. 

 
x <- c(0, 1, 1.1, 1.5, 1.9, 2.8, 2.9, 3.5) 
n <- length(x) 
 
For a grid 
xgrid <- seq(from = min(x) - 1, to = max(x) + 1, by = 0.01) 
 
on the real line, we can compute the contribution of each measurement in 𝑥𝑥, with ℎ = 0.4, by the 
Gaussian kernel (defined in Figure 2.12, line 3) as follows: 
h <- 0.4 
bumps <- sapply(x, function(a) gauss((xgrid - a)/h)/(n * h)) 
 
A plot of the individual bumps and their sum, the kernel density estimate 𝑓𝑓, is shown in Figure 
2.13. 
 
plot(xgrid, rowSums(bumps), ylab = expression(hat(f)(x)), type = "l", xlab = "x", 
lwd = 2) 
rug(x, lwd = 2) 
out <- apply(bumps, 2, function(b) lines(xgrid, b)) 



 
Fig. 2.13. Kernel estimate showing the contributions of Gaussian kernels evaluated for the individual observations 
with bandwidth h = 0:4. 
 
Some other common kernels: 
 

4. Epanechnikov 
𝐾𝐾(𝑥𝑥) = 3

4
(1 − 𝑥𝑥2)1{|𝑥𝑥|<1}, 

5. Quartic (biweight) 
𝐾𝐾(𝑥𝑥) = 15

16
(1 − 𝑥𝑥2)21{|𝑥𝑥|<1}, 

6. Triweight 
𝐾𝐾(𝑥𝑥) = 35

32
(1 − 𝑥𝑥2)31{|𝑥𝑥|<1}, 

7. Tricube 
𝐾𝐾(𝑥𝑥) = 70

81
(1 − |𝑥𝑥|3)31{|𝑥𝑥|<1}, 

8. Cosine 
𝐾𝐾(𝑥𝑥) = 𝜋𝜋

4
cos �𝜋𝜋

2
𝑥𝑥� 1{|𝑥𝑥|<1}. 

Two Dimension 
 
The kernel density estimator considered as a sum of “bumps” centered at the observations has 
a simple extension to two dimensions (and similarly for more than two dimensions). The bivariate 
estimator for data (𝑥𝑥1,𝑦𝑦1), (𝑥𝑥2,𝑦𝑦2), … , (𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛) is defined as 

𝑓𝑓(𝑥𝑥,𝑦𝑦) = 1
𝑛𝑛ℎ𝑥𝑥ℎ𝑦𝑦

 ∑ 𝐾𝐾 �𝑥𝑥−𝑥𝑥𝑖𝑖
ℎ𝑥𝑥

, 𝑦𝑦−𝑦𝑦𝑖𝑖
ℎ𝑦𝑦

�𝑛𝑛
𝑖𝑖=1 . 

In this estimator, each coordinate direction has its own smoothing parameter, ℎ𝑥𝑥 or ℎ𝑦𝑦. An 
alternative is to scale the data equally for both dimensions and use a single smoothing parameter. 
For bivariate density estimation, a commonly used kernel function is the standard bivariate 
normal density 



𝐾𝐾(𝑥𝑥,𝑦𝑦) = 1
2𝜋𝜋

 𝑒𝑒−
1
2 (𝑥𝑥2+𝑦𝑦2). 

Another possibility is the bivariate Epanechnikov kernel given by 

𝐾𝐾(𝑥𝑥,𝑦𝑦) = �
2
𝜋𝜋

 (1 − 𝑥𝑥2 − 𝑦𝑦2) 𝑥𝑥2 + 𝑦𝑦2 < 1
0 𝑜𝑜.𝑤𝑤.

, 

which is implemented and depicted in Figure 2.14 by using the persp function for plotting in three 
dimensions. 
 
epa <- function(x, y) ((x^2 + y^2) < 1) * 2/pi * (1 - x^2 - y^2) 
x <- seq(from = -1.1, to = 1.1, by = 0.05) 
 epavals <- sapply(x, function(a) epa(a, x)) 
persp(x = x, y = x, z = epavals, xlab = "x", ylab = "y", zlab = expression(K(x, y)), theta = -35, axes 
= TRUE, box = TRUE) 
 

 
Fig. 2.14. Epanechnikov kernel for a grid between (−1.1,−1.1) and (1.1,1.1). 

 
 
Our first illustration of enhancing a scatterplot with an estimated bivariate density will involve 
data from the Hertzsprung-Russell (H-R) diagram of the star cluster CYG OB1, calibrated 
according to Vanisma and De Greve (1972). The H-R diagram is the basis of the theory of stellar 
evolution and is essentially a plot of the energy output of stars as measured by the logarithm of 
their light intensity plotted against the logarithm of their surface temperature. Part of the data 
is shown in Table 2.1.  
 
Table 2.1: CYGOB1 data. Energy output and surface temperature of star cluster CYG OB1. 
 
 



 
 
logst<-c(4.37, 4.56, 4.26, 4.56, 4.30, 4.46, 3.84, 4.57, 4.26, 4.37, 3.49, 4.43, 4.48, 4.01, 4.29, 
4.42, 4.23, 4.42, 4.23, 3.49, 4.29, 4.29, 4.42, 4.49, 4.38, 4.42, 4.29, 4.38, 4.22, 3.48, 4.38, 
4.56, 4.45, 3.49, 4.23, 4.62, 4.53, 4.45, 4.53, 4.43, 4.38, 4.45, 4.50, 4.45, 4.55, 4.45, 4.42) 
logli<-c(5.23, 5.74, 4.93, 5.74, 5.19, 5.46, 4.65, 5.27, 5.57, 5.12, 5.73, 5.45, 5.42, 4.05, 4.26, 
4.58, 3.94, 4.18, 4.18, 5.89, 4.38, 4.22, 4.42, 4.85, 5.02, 4.66, 4.66, 4.90, 4.39, 6.05, 4.42, 
5.10, 5.22, 6.29, 4.34, 5.62, 5.10, 5.22, 5.18, 5.57, 4.62, 5.06, 5.34, 5.34, 5.54, 4.98, 4.50) 
CYGOB1<-data.frame(logst,logli) 
 
A scatterplot of the data enhanced by the contours of the estimated bivariate density, obtained 
with the function bkde2D()1 from the package KernSmooth, is shown in Figure 2.15.  
 
library("KernSmooth") 
CYGOB1d <- bkde2D(CYGOB1, bandwidth = sapply(CYGOB1, dpik)) 
                                                           
1 The kernel is the standard bivariate normal density 



plot(CYGOB1, xlab = "log surface temperature", ylab = "log light intensity") 
contour(x = CYGOB1d$x1, y = CYGOB1d$x2, z = CYGOB1d$fhat, add = TRUE) 

 
Fig. 2.15. Scatterplot of the log of light intensity and log of surface temperature for the stars in star cluster CYG OB1 showing 
the estimated bivariate density. 
 
 
The plot shows the presence of two distinct clusters of stars: the larger cluster consists of stars 
that have high surface temperatures and a range of light intensities, and the smaller cluster 
contains stars with low surface temperatures and high light intensities. The bivariate density 
estimate can also be displayed by means of a perspective plot rather than a contour plot, and 
this is shown in Figure 2.16.  
 
persp(x = CYGOB1d$x1, y = CYGOB1d$x2, z = CYGOB1d$fhat, 
 xlab = "log surface temperature", 
 ylab = "log light intensity", 
 zlab = "density") 



 
Fig. 2.16. Perspective plot of estimated bivariate density. 

 
This again demonstrates that there are two groups of stars. 
 

 

Multi Dimension 
Kernel density estimation can be easily generalized from univariate to multivariate data, in theory 
if not always in practice. The general form of the estimator is 

𝑓𝑓(𝒙𝒙) = 1
𝑛𝑛det𝑯𝑯

 ∑ 𝐾𝐾𝑞𝑞[𝑯𝑯−1(𝒙𝒙 − 𝒙𝒙𝑖𝑖)]𝑛𝑛
𝑖𝑖=1 , 

where 𝒙𝒙 = (𝑥𝑥1, … , 𝑥𝑥𝑞𝑞)′, 𝒙𝒙𝑖𝑖 = (𝑥𝑥𝑖𝑖1, … , 𝑥𝑥𝑖𝑖𝑞𝑞)′, 𝑖𝑖 = 1, … ,𝑛𝑛 are 𝑞𝑞-vectors; 𝑯𝑯 is the bandwidth (or 
smoothing) 𝑞𝑞 × 𝑞𝑞 positive definite matrix and 𝐾𝐾𝑞𝑞:ℝ𝑞𝑞 → ℝ is the kernel function.  
A popular technique for generating 𝐾𝐾𝑞𝑞 from a univariate kernel 𝐾𝐾 is by using a product kernel, 

𝐾𝐾𝑞𝑞(𝒖𝒖) = ∏ 𝐾𝐾(𝑢𝑢𝑗𝑗)𝑞𝑞
𝑗𝑗=1 . 
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