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1. Introduction 

 

The majority of data sets collected by researchers are of multivariate type including several 

measurements, features, observations and units. Examples: 

 

 Psychologists and other behavioral scientists often record the values of several different 

cognitive variables on a number of subjects.  

 Educational researchers may be interested in the examination marks obtained by 

students for a variety of different subjects.  

 Archaeologists may make a set of measurements on artefacts of interest.  

 Environmentalists might assess pollution levels of a set of cities along with noting other 

characteristics of the cities related to climate and human ecology. 

2. Representation 

Mostly in a rectangular format 

the elements of each row = variable values of a particular unit 

the elements of the columns = values taken by a particular variable. 

 

 

𝑛 units, 𝑞 variables recorded on each unit. 𝑥𝑖𝑗 value of the 𝑗th variable on 𝑖th unit.  
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A hypothetical Example 

 

Here, the number of units (people in this case) is 𝑛 = 10, with the number of variables being 
𝑞 = 7. 
 

R Code to make Table 1.1: 
gender<-c("Male","Female") 

sex <- rep(gender, each=5) 

age <- c(21, 43, 22, 86, 60, 16, NA, 43, 22, 80) 

IQ <- c(120, NA, 135, 150, 92, 130, 150, NA, 84, 70) 

depression <- c("Yes", "No", "No", "No", "Yes", "Yes", "Yes", "Yes", "No", "No") 
health <- c("Very good", "Very good", "Average", "Very poor", "Good", "Good", 

"Very good", "Average","Average","Good") 

weight <- c(150, 160, 135, 140, 110, 110, 120, 120, 105, 100) 

hypo <- data.frame(sex,age,IQ,depression,health,weight) 
 

Extraction 
 

> hypo [1:2, c("health", "weight")] 

health weight                                                           

1 Very good 150 
2 Very good 160 
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Level of measurements 

Nominal: Unordered categorical variables. Examples include treatment allocation, the sex of the 
respondent, hair color, presence or absence of depression, and so on. 
Ordinal: Where there is an ordering but no implication of equal distance between the different 
points of the scale. Examples include social class, self-perception of health (each coded from I to 
V, say), and educational level (no schooling, primary, secondary, or tertiary education). 
Interval: Where there are equal differences between successive points on the scale but the 
position of zero is arbitrary. The classic example is the measurement of temperature using the 
Celsius or Fahrenheit scales. 
Ratio: The highest level of measurement, where one can investigate the relative magnitudes of 
scores as well as the differences between them. The position of zero is fixed. The classic example 
is the absolute measure of temperature (in Kelvin, for example), but other common ones 
includes age (or any other time from a fixed event), weight, and length. 
 

3. Covariances, Correlations, and Distances 

 

Expectation 

 

The mean or expectation of a random 𝑞 × 1 vector 𝑿 = (𝑋1, … , 𝑋𝑞)′ is defined to be the vector 

of expectations 

𝝁 = 𝐸(𝑿) = (

𝐸(𝑋1)
⋮

𝐸(𝑋𝑞)
) 

Covariance 

The covariance of two random variables is a measure of their linear dependence. 

𝜎𝑖𝑗
2 = 𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗) = 𝐸(𝑋𝑖 − 𝜇𝑖)(𝑋𝑗 − 𝜇𝑗),            𝜇𝑖 = 𝐸(𝑋𝑖),       𝜇𝑗 = 𝐸(𝑋𝑗). Also 

𝜎𝑖
2 = 𝑉𝑎𝑟(𝑋𝑖) = 𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑖) = 𝐸(𝑋𝑖 − 𝜇𝑖)

2. 
In a multivariate data set with 𝑞 observed variables, there are 𝑞 variances and 𝑞(𝑞 − 1)/2 
covariances. These quantities can be conveniently arranged in a 𝑞 × 𝑞 symmetric matrix, 𝚺 
where 

𝚺 = (

𝜎1
2

𝜎21

⋮
𝜎𝑞1

𝜎12

𝜎2
2

⋮
𝜎𝑞2

……
⋱
…

𝜎1𝑞

𝜎2𝑞

⋮
𝜎𝑞

2

). 

Note that 𝜎𝑖𝑗 = 𝜎𝑗𝑖. This matrix is generally known as the variance-covariance matrix or simply 

the covariance matrix of the data. 
𝚺 = 𝐶𝑜𝑣(𝑿) = 𝐸[(𝑿 − 𝝁)(𝑿 − 𝝁)′] = 𝐸(𝑿𝑿′) − 𝝁𝝁′. 
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Obviously 𝚺 is symmetric, i.e., 𝚺 = 𝚺′. Indeed, the class of covariance matrices coincides with the 
class of non-negative definite matrices.  
Recall that an 𝑞 × 𝑞 symmetric matrix 𝑨 is called non-negative (positive definite) definite if 

𝜶′𝑨𝜶 ≥ (>)0                   𝑓𝑜𝑟 𝑎𝑙𝑙               𝜶 ∈ ℝ𝑞. 
Lemma 3-1: The 𝒒 × 𝒒 matrix 𝚺 is a covariance matrix iff (if and only if) it is non-negative 
definite. 

Proof: Suppose 𝚺 is the covariance matrix of a random vector 𝑿, with 𝝁 = 𝐸(𝑿). Then for all 𝜶 ∈

ℝ𝑞 

𝑉𝑎𝑟(𝜶′𝑿) = 𝐸[(𝜶′𝑿 − 𝜶′𝝁)2] = 𝐸[(𝜶′(𝑿 − 𝝁))2] = 𝐸[𝜶′(𝑿 − 𝝁)(𝑿 − 𝝁)′𝜶] = 𝜶′𝚺𝜶 ≥ 0, 

so that 𝚺 is non-negative definite. Now suppose 𝚺 is non-negative definite matrix of rank 𝑟, say 

(𝑟 ≤ 𝑞). Write 𝚺 = 𝑪𝑪′, where 𝐶 is an 𝑞 × 𝑟 matrix of rank 𝑟. Let 𝒀 be an 𝑟 × 1  vector of 

independent random variables with mean 𝟎 and 𝐶𝑜𝑣(𝒀) = 𝑰𝑟 and put 𝑿 = 𝑪𝒀. Then 𝐸(𝑿) = 𝟎 

and 𝐶𝑜𝑣(𝑿) = 𝐸(𝑿𝑿′) = 𝐸(𝑪𝒀𝒀′𝑪′) = 𝑪𝐸(𝒀𝒀′)𝑪 = 𝑪𝑪′ = 𝚺, So that 𝚺 is a covariance matrix.  

 

Theorem 3-1: If 𝑿 is an 𝒒 × 𝟏 random vector, then its distribution is uniquely determined by the 
distribution of linear function 𝜶′𝑿, for every 𝜶 ∈ ℝ𝒒. 

Proof: The characteristic function of 𝑿 is  

𝜙(𝑡, 𝜶) = 𝐸[𝑒𝑖𝑡𝜶′𝑿], 

So that  

𝜙(1, 𝜶) = 𝐸[𝑒𝑖𝜶′𝑿], 

which, considered as a function of 𝜶, is the characteristic function of 𝑿 (i.e., the joint 
characteristic  function of the components of 𝑿). The required result then follows by invoking 
the fact that a distribution in ℝ𝑞 is uniquely determined by its characteristic function. 
For a set of multivariate observations, perhaps sampled from some population, the matrix 𝚺 is 
estimated by 

𝑺 =
1

𝑛 − 1
 ∑ (𝒙𝑖 − �̅�)(𝒙𝑖 − �̅�)′

𝑛

𝑖=1
 

where 𝒙𝑖
′ = (𝑥𝑖1, … , 𝑥𝑖𝑞) is the vector of observations for the 𝑖th individual 

�̅� =
1

𝑛
 ∑ 𝒙𝑖

𝑛

𝑖=1
 

is the mean vector of the observations. 

The diagonal of 𝑺 contains the sample variances of each variable, which we shall denote as 𝑠𝑖
2. 

We have 
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𝐒 = (

𝑠1
2

𝑠21

⋮
𝑠𝑞1

𝑠12

𝑠2
2

⋮
𝑠𝑞2

……
⋱
…

𝑠1𝑞

𝑠2𝑞

⋮
𝑠𝑞

2

) 

Consider a data set which consists of chest, waist, and hip measurements on a sample of men 
and women and the measurements for 20 individuals are shown in Table 1.2. 
Table 1.2: measure data. Chest, waist, and hip measurements on 20 individuals (in inches). 
 

 
 

R Code to make Table 1.2 as it is: 
chest = c(34,37,38,36,38,43,40,38,40,41) 

waist = c(30,32,30,33,29,32,33,30,30,32) 

hips = c(32,37,36,39,33,38,42,40,37,39) 

gender = rep("male",10) 

f1= data.frame(chest,waist,hips,gender) 

chest = c(36,36,34,33,36,37,34,36,38,35) 
waist = c(24,25,24,22,26,26,25,26,28,23) 

hips = c(35,37,37,34,38,37,38,37,40,35) 

gender = rep("female",10) 

f2= data.frame(chest,waist,hips,gender) 

measure=cbind(f1,f2) 

 
But we use the following format 
 
chest = c(34,37,38,36,38,43,40,38,40,41,36,36,34,33,36,37,34,36,38,35) 
waist = c(30,32,30,33,29,32,33,30,30,32,24,25,24,22,26,26,25,26,28,23) 

hips = c(32,37,36,39,33,38,42,40,37,39,35,37,37,34,38,37,38,37,40,35) 

gender = c("Male","Female") 

sex = rep(gender, each=10) 

measure=data.frame(chest,waist,hips,sex)             
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The covariance matrix for the data in Table 1.2 can be obtained using the var() function in R; 
however, we have to ``remove” the categorical variable gender from the measure data frame by 
subsetting on the numerical variables first: 
 
cov(measure[, c("chest", "waist", "hips")]) 

chest waist hips                                                                 

chest 6.632 6.368 3.000 

waist 6.368 12.526 3.579 

hips 3.000 3.579 5.945 
 

If we require the separate covariance matrices of men and women, we can use 
 
cov(measure[11:20, c("chest", "waist", "hips")]) 

chest waist hips                                              

chest 2.278 2.167 1.556 

waist 2.167 2.989 2.756 

hips 1.556 2.756 3.067 

 
cov(measure [1:10, c("chest", "waist", "hips")]) 
chest waist hips                                               

chest 6.7222 0.9444 3.944 

waist 0.9444 2.1000 3.078 

hips 3.9444 3.0778 9.344 

 

Correlation 

The covariance is often difficult to interpret because it depends on the scales on which the two 
variables are measured; consequently, it is often standardized by dividing by the product of the 
standard deviations of the two variables to give a quantity called the correlation coefficient 
(Pearson linear correlation), 𝜌𝑖𝑗, where 

𝜌𝑖𝑗 =
𝜎𝑖𝑗

𝜎𝑖𝜎𝑗
,        𝜎𝑖 = √𝜎𝑖

2. 

The advantage of the correlation is that it is independent of the scales of the two variables. The 
correlation coefficient lies between −1 and +1 and gives a measure of the linear relationship of 
the variables 𝑋𝑖 and 𝑋𝑗 . It is positive if high values of 𝑋𝑖 are associated with high values of 𝑋𝑗 and 

negative if high values of 𝑋𝑖 are associated with low values of 𝑋𝑗 . If the relationship between 

two variables is non-linear, their correlation coefficient can be misleading. 
With 𝑞 variables there are 𝑞(𝑞 − 1)/2 distinct correlations, which may be arranged in a 𝑞 × 𝑞 
correlation matrix the diagonal elements of which are unity. For observed data, the correlation 
matrix contains the usual estimates of the 𝜌s, and is generally denoted by 𝑹. We have 

𝐑 = (

1
𝑟21

⋮
𝑟𝑞1

𝑟12

1
⋮

𝑟𝑞2

……
⋱
…

𝑟1𝑞

𝑟2𝑞

⋮
1

) 

The 𝑹 matrix may be written in terms of the sample covariance matrix 𝑺 

𝑹 = 𝑫−
1

2𝑺𝑫−
1

2, 
Where  
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𝑫−
1

2 = 𝑑𝑖𝑎𝑔 (
1

𝑠1
, … ,

1

𝑠𝑞
) and 𝑠𝑖 = √𝑠𝑖

2 is the sample standard deviation of variable 𝑖. (In most 

considered situations, we will be dealing with covariance and correlation matrices of full rank, 𝑞, 
so that both matrices will be non-singular, that is, invertible, to give matrices 𝑺−1 or 𝑹−1.) 
 
The sample correlation matrix for the three variables in Table 1.2 is obtained by using the 
function cor() in R: 
 
> cor(measure[, c("chest", "waist", "hips")]) 

chest waist hips                                                                                  

chest 1.0000 0.6987 0.4778 
waist 0.6987 1.0000 0.4147 

hips 0.4778 0.4147 1.0000 

 

Distances 

 
Given two data points 𝒙 = (𝑥1, … , 𝑥𝑞)′ and = (𝑦1, … , 𝑦𝑞)′ , what serves as a measure of distance 

between them? The most common measure used is Euclidean distance, which is defined as 

𝑑(𝒙, 𝒚) = [(𝒙 − 𝒚)′(𝒙 − 𝒚)]
1

2 = √(𝑥1 − 𝑦1)2 + ⋯+ (𝑥𝑞 − 𝑦𝑞)
2
. 

Euclidean distance can be calculated using the dist() function in R. 
Here we shall illustrate this on the body measurement data (Table 1.2) and divide each variable 
by its standard deviation using the function scale() before applying the dist() function 
 
> dist(scale(measure[, c("chest", "waist", "hips")],center = FALSE)) 

 
There are some other distances such as City-block, Minkowski, Canberra, Bhattacharyya and etc. 

One other important distance measure is the Mahalanobis distance, which is defined as 

𝑑(𝒙, 𝒚) = [ (𝒙 − 𝒚)′𝑺−1(𝒙 − 𝒚)]
1

2, 

where 𝑆 is the covariance between 𝑥 and 𝑦. Then the Mahalanobis angle 𝜃 between 𝑥 and 𝑦, 

subtended at the origin, is defined by 

𝜃 = 𝑎𝑟𝑐 cos
𝑥′𝑆−1𝑦

𝑑(𝑥,0)𝑑(𝑦,0)
. 

In the case of two populations, Given a sample of size 𝑛𝑖, with sample mean �̅�𝑖  and sample 
covariance matrix 𝑆𝑖, from the 𝑖th population (𝑖 = 1,2) we have the sample version 

𝑑(�̅�1, �̅�2) = [(�̅�1 − �̅�2)
′𝑆𝑝

−1(�̅�1 − �̅�2)]
1

2, 

where 𝑆𝑝 =
1

𝑛1+𝑛2−2
 [(𝑛1 − 1)𝑆1 + (𝑛2 − 1)𝑆2] is a pooled sample covariance matrix. 

In general, a distance measure 𝑑(𝒙, 𝒚) must satisfy the following conditions 

I. 𝑑(𝒙, 𝒚) = 𝑑(𝒚, 𝒙), 
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II. 𝑑(𝒙, 𝒚) > 0 if 𝒙 ≠ 𝒚 and 𝑑(𝒙, 𝒚) = 0 if 𝒙 = 𝒚, 

III. 𝑑(𝒙, 𝒚) ≤ 𝑑(𝒙, 𝒛) + 𝑑(𝒛, 𝒚) for three vectors 𝒙, 𝒚 and 𝒛 of the same size. 

4. Multivariate Normal Distribution 

 

Construction 
 

Theorem 4-1: If 𝑿 has an 𝒒-variate normal distribution, then both 𝝁 = 𝑬(𝑿) and 𝚺 = 𝑪𝒐𝒗(𝑿) 
exist and the distribution of 𝑿 is determined by 𝝁 and 𝚺. 

The 𝑞-variate normal distribution of the random vector 𝑿 of Theorem 2-2 will be denoted by 
𝑿 ∼ 𝑁𝑞(𝝁, 𝚺). 

Theorem 4-2: If 𝑿 ∼ 𝑵𝒒(𝝁, 𝚺) and 𝚺 is positive definite, then the density of 𝑿 is  

𝑓𝑿(𝒙) =
1

(2𝜋)
𝑞
2(det 𝚺)

1
2

exp (−
1

2
(𝒙 − 𝝁)′𝚺−1(𝐱 − 𝛍)) 

(Here, and throughout the note, det denotes determinant). 

Proof: Write 𝚺 = 𝑪𝑪′ where 𝑪 is a nonsingular matrix 𝑞 × 𝑞 and put 𝑿 = 𝑪𝑼 + 𝝁 where 𝑼 is an 

𝑞 × 1 vector of independent 𝑁(0,1) random variables, i.e., 𝑼 ∼ 𝑁𝑞(𝟎, 𝑰𝑞). The joint density 

function of 𝑈1, … , 𝑈𝑞 is  

𝑓(𝒖) = ∏
1

√2𝜋
exp (−

1

2
 𝑢𝑖

2) =
1

(2𝜋)
𝑞
2

exp (−
1

2
 𝒖′𝒖)

𝑞

𝑖=1
 

The inverse transform is 𝑼 = 𝑩(𝑿 − 𝝁), with 𝑩 = 𝑪−1, and the Jacobian of this transformation 

is  

det

[
 
 
 
 
 
𝜕𝑢1

𝜕𝑥1
…

𝜕𝑢1

𝜕𝑥𝑞

⋮ ⋱ ⋮
𝜕𝑢𝑞

𝜕𝑥1
…

𝜕𝑢𝑞

𝜕𝑥𝑞]
 
 
 
 
 

= det [

𝑏11

⋮
𝑏𝑞1

𝑏12

⋮
𝑏𝑞2

… 𝑏1𝑞

⋱ ⋮
… 𝑏𝑞𝑞

]

= det 𝑩 = det 𝑪−1 = (det 𝑪)−1 = [det(𝑪𝑪′)]−
1
2 = (det 𝚺)−

1
2 

So that the density function of 𝑿 is 

𝑓𝑿(𝒙) =
1

(2𝜋)
𝑞
2(det𝚺)

1
2

exp (−
1

2
(𝒙 − 𝝁)′𝑪−1′

𝑪−1(𝒙 − 𝝁)); 
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and since 𝚺−1 = 𝑪−1′
𝑪−1, the proof is complete. 

The density function of multivariate normal distribution is constant whenever the quadratic 
form in the exponent is, so that it is constant on the ellipsoid 

(𝒙 − 𝝁)′𝜮−1(𝒙 − 𝝁) = 𝑘 

in ℝ𝑞, for every 𝑘 > 0. This ellipsoid has center 𝜇, and axes ±𝑐√𝜆𝑖𝒆𝑖  (where 𝜆𝑖 and 𝑒𝑖 are the 

eigenvalues and eigenvectors of Σ), while Σ determines its shape and orientation. The above 
ellipsoid gives the contours of multivariate normal distribution for different values 𝑘.  
 

Simulation 
 library(MASS) 

 mu=c(1,2) 

 Sigma=matrix(c(10,3,3,2),2,2) 

 mvrnorm(n=5,mu,Sigma) 

           [,1]        [,2  

[1,]  2.8810714  0.03039017 

[2,]  3.0003637  1.55234615 

[3,] -1.1981544 -0.47694161 

[4,]  1.9683900  1.15906644 
[5,] -0.6981529  0.29307889 

Hint: 

 var(mvrnorm(n=5,mu,Sigma)) 

         [,1]     [,2] 
[1,] 4.740504 1.806905 

[2,] 1.806905 1.726933 

 

 var(mvnorm(n=5,mu,Sigma,empirical=TRUE))                    

(If true, mu and Sigma specify the empirical not population mean and covariance matrix) 

     [,1] [,2] 

[1,]   10    3 

[2,]    3    2 

It is worthwhile looking explicitly at the bivariate normal distribution (𝑞 = 2). In this case 

𝑋 = (
𝑋1

𝑋2
) ,               𝜇 = (

𝜇1

𝜇2
) ,                Σ = [

𝜎11 𝜎12

𝜎12 𝜎22
] = [

𝜎1
2 𝜌𝜎1𝜎2

𝜌𝜎1𝜎2 𝜎2
2 ], 

where 𝐸(𝑋1) = 𝜇1, 𝐸(𝑋2) = 𝜇2, 𝑉𝑎𝑟(𝑋1) = 𝜎1
2 , 𝑉𝑎𝑟(𝑋2) = 𝜎2

2, and the correlation between 𝑋1 

and 𝑋2 is 𝜌. For the distribution of 𝑋 to be nonsingular normal we need 𝜎1
2 > 0, 𝜎2

2 > 0, and 

det Σ = 𝜎1
2𝜎2

2(1 − 𝜌2) > 0, so that −1 < 𝜌 < 1. Then the joint density function of 𝑋1 and 𝑋2 is 
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𝑓𝑋(𝑥1, 𝑥2) =
1

2𝜋𝜎1𝜎2(1−𝜌2)
1
2

exp {−
1

2(1−𝜌2)
 [(

𝑥1−𝜇1

𝜎1
)
2

+ (
𝑥2−𝜇2

𝜎2
)
2

− 2𝜌 
(𝑥1−𝜇1)(𝑥2−𝜇2)

𝜎1𝜎2
]}. 

Graph 
 

 require(MASS) 

 require(graphics) 

 require(mnormt) 

 x=seq(-2,2,len=100) 

 y=seq(-2,2,len=100) 

 mu=c(0,0) 

 Sigma=matrix(c(1,0,0,10),2,2) 

 g=function(x,y){ dmnorm(cbind(x,y),mu,Sigma)} 

 z=outer(x,y,g) 

 persp(x,y,z) 

contour(x,y,z, drawlabels=FALSE, xlab="x", ylab="y") 

 

 

Testing Multivariate Normality 
 

For many multivariate methods, the assumption of multivariate normality is not critical to the 
results of the analysis, but there may be occasions when testing for multivariate normality may 
be of interest. A start can be made perhaps by assessing each variable separately for univariate 
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normality using a probability plot. Such plots are commonly applied in univariate analysis and 
involve ordering the observations and then plotting them against the appropriate values of an 
assumed cumulative distribution function. There are two basic types of plots for comparing two 
probability distributions, the probability-probability (p-p) plot and the quantile-quantile (q-q) 
plot. The diagram in Figure 1.2 may be used for describing each type. 

 
Fig. 1.2. Cumulative distribution functions and quantiles. 

A plot of points whose coordinates are the cumulative probabilities 𝑝1(𝑞) = 𝑃(𝑋1 ≤ 𝑞) and 
𝑝2(𝑞) = 𝑃(𝑋2 ≤ 𝑞) for diffeerent values of 𝑞 for random variables 𝑋1 and 𝑋2 is a probability-
probability plot, while a plot of the points whose coordinates are the quantiles (𝑞1(𝑝), 𝑞2(𝑝)) for 
different values of p with 
𝑞1(𝑝) = 𝑝1

−1(𝑝),      𝑞2(𝑝) = 𝑝2
−1(𝑝), 

is a quantile-quantile plot. For example a q-q plot for investigating the assumption that a set of 
data is form a normal distribution would involve plotting the ordered sample values of variable 1 
(i.e. 𝑥(1), … , 𝑥(𝑛)) against the quantiles of a standard normal distribution, Φ−1(𝑝(𝑖)), where 

usually 𝑝𝑖 =
𝑖−

1

2

𝑛
, and Φ(𝑥) = ∫

1

√2𝜋

𝑥

−∞
 𝑒−

1

2
 𝑢2

𝑑𝑢.  

If the two distributions being compared are similar, the points in the Q–Q plot will approximately lie on 
the line y = x. If the distributions are linearly related, the points in the Q–Q plot will approximately lie on a 
line, but not necessarily on the line y = x. 

For multivariate data, normal probability plots may be used to examine each variable separately, 
although marginal normality does not necessarily imply that the variables follow a multivariate 
normal distribution.  
Alternatively (or additionally), each multivariate observation might be converted to a single 
number in some way before plotting. For example, in the specific case of assessing a data set for 
multivariate normality, each 𝑞-dimensional observation, 𝒙𝑖, could be converted into a 

generalized distance, 𝑑𝑖
2, giving a measure of the distance of the particular observation from the 

mean vector of the complete sample, �̅�; 𝑑𝑖
2 is calculated as 

𝑑𝑖
2 = (𝒙𝑖 − �̅�)′𝑺−1(𝒙𝑖 − �̅�), 

where 𝑺 is the sample covariance matrix. This distance measure takes into account the different 
variances of the variables and the covariances of pairs of variables. If the observations do arise 
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from a multivariate normal distribution, then these distances have approximately a chi-squared 
distribution with 𝑞 degrees of freedom, also denoted by the symbol 𝜒𝑞

2 . So plotting the ordered 

distances against the corresponding quantiles of the appropriate chi-square distribution should 
lead to a straight line through the origin. 
We will now assess the body measurements data in Table 1.2 for normality, although because 
there are only 20 observations in the sample there is really too little information to come to any 
convincing conclusion. Figure 1.3 shows separate probability plots for each measurement; there 
appears to be no evidence of any departures from linearity. The chi-square plot of the 20 
generalized distances in Figure 1.4 does seem to deviate a little from linearity, but with so few 
observations it is hard to be certain. The plot is set up as follows. We first extract the relevant 
data 
x <- measure [, c("chest", "waist", "hips")] 

and estimate the means of all three variables (i.e., for each column of the data) and the 
covariance matrix 
cm <- colMeans(x) 
S <- cov(x) 

 
qqnorm(measure[,"chest"], main = "chest"); qqline(measure[,"chest"]) 

qqnorm(measure[,"waist"], main = "waist"); qqline(measure[,"waist"]) 

qqnorm(measure[,"hips"], main = "hips"); qqline(measure[,"hips"]) 

 

 

 
Fig. 1.3. Q-Q  plots for Normality of chest, waist, and hip measurements. 
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The differences 𝑑𝑖 have to be computed for all units in our data, so we iterate over the rows of 𝒙 
using the apply() function with argument MARGIN = 1 and, for each row, compute the distance 
𝑑𝑖: 
d <- apply(x, MARGIN = 1, function(x)  t(x - cm) %*% solve(S) %*% (x - cm)) 

 

The sorted distances can now be plotted against the appropriate quantiles of the 𝜒3
2 distribution 

obtained from qchisq(); see Figure 1.4. 
 

plot(qchisq((1:nrow(x) - 1/2) / nrow(x), df = 3), sort(d), 

xlab = expression(paste(chi[3]^2, " Quantile")), 
ylab = "Ordered distances") 

abline(a = 0, b = 1) 

 

 
Fig. 1.4. Chi-square plot of generalised distances for body measurements data. 

 

 

 
 

USairpollution data 
 
Consider a data set for studying the air pollution in cities in the USA in 1981. The following 
variables were obtained for 41 US cities: 
 
SO2: SO2 content of air in micrograms per cubic meter; 
temp: average annual temperature in degrees Fahrenheit; 
manu: number of manufacturing enterprises employing 20 or more workers; 
popul: population size (1970 census) in thousands; 
wind: average annual wind speed in miles per hour; 
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precip: average annual precipitation in inches; 
predays: average number of days with precipitation per year. 
 
 
 
 
The data are shown in Table 1.5. (It is not here). R code for generating Table 1.5 
 

USairpollution=matrix(c(46,11,24,47,11,31,110,23,65,26,9,17,17,35,56,10,28,14,14,13,30,10,10,16,29,18,

9,31,14,69,10,61,94,26,28,12,29,56,29,8,36,47.6,56.8,61.5,55.0,47.1,55.2,50.6,54.0,49.7,51.5,66.2,51.9,49

.0,49.9,49.1,68.9,52.3,68.4,54.5,61.0,55.6,61.6,75.5,45.7,43.5,59.4,68.3,59.3,51.5,54.6,70.3,50.4,50.0,57.8

,51.0,56.7,51.1,55.9,57.3,56.6,54.0,44,46,368,652,391,35,3344,462,1007,266,641,454,104,1064,412,721,3

61,136,381,91,291,337,207,569,699,275,204,96,181,1692,213,347,343,197,137,453,379,775,434,125,80,1

16,244,497,905,463,71,3369,453,751,540,844,515,201,1513,158,1233,746,529,507,132,593,624,335,717,

744,448,361,308,347,1950,582,520,179,299,176,716,531,622,757,277,80,8.8,8.9,9.1,9.6,12.4,6.5,10.4,7.1,

10.9,8.6,10.9,9.0,11.2,10.1,9.0,10.8,9.7,8.8,10.0,8.2,8.3,9.2,9.0,11.8,10.6,7.9,8.4,10.6,10.9,9.6,6.0,9.4,10.6

,7.6,8.7,8.7,9.4,9.5,9.3,12.7,9.0,33.36,7.77,48.34,41.31,36.11,40.75,34.44,39.04,34.99,37.01,35.94,12.95,3

0.85,30.96,43.37,48.19,38.74,54.47,37.00,48.52,43.11,49.10,59.80,29.07,25.94,46.00,56.77,44.68,30.18,3

9.93,7.05,36.22,42.75,42.59,15.17,20.66,38.79,35.89,38.89,30.58,40.25,135,58,115,111,166,148,122,132,

155,134,78,86,103,129,127,103,121,116,99,100,123,105,128,123,137,119,113,116,98,115,36,147,125,115

,89,67,164,105,111,82,114),41) 

cities = c("Albany", "Albuquerque","Atlanta","Baltimore","Buffalo","Charleston","Chicago", 
"Cincinnati","Cleveland","Columbus","Dallas","Denver","DesMoines","Detroit","Hartford","Housto

n","Indianapolis","Jacksonville","Kansas City","Little Rock","Louisville","Memphis","Miami", 

"Milwaukee","Minneapolis","Nashville","New Orleans","Norfolk","Omaha","Philadelphia", 

"Phoenix","Pittsburgh","Providence","Richmond","Salt Lake City","San Francisco","Seattle","St. 

Louis","Washington","Wichita","Wilmington") 

variables = c("SO2","temp","manu","popul","wind", "precip","predays") 
colnames(USairpollution) = variables 

rownames(USairpollution)= cities 
 
We will now look at using the chi-square plot on a set of data, namely the air pollution in US 
cities (see Table 1.5). The probability plots for each separate variable are shown in Figure 1.5. 
Here, we also iterate over all variables, this time using a special function, sapply(), that loops 
over the variable names: 
 

layout(matrix(1:8, nc = 2))    

qqnorm(USairpollution[,"SO2"], main = "SO2"); qqline(USairpollution[,"SO2"]) 

qqnorm(USairpollution[,"temp"], main = "temp"); qqline(USairpollution[,"temp"]) 

qqnorm(USairpollution[,"manu"], main = "manu"); qqline(USairpollution[,"manu"]) 
qqnorm(USairpollution[,"popul"],main ="popul");qqline(USairpollution[,"popul"]) 

qqnorm(USairpollution[,"wind"],main="wind"); qqline(USairpollution[,"wind"]) 

qqnorm(USairpollution[,"precip"],main="precip");qqline(USairpollution[,"precip"]) 

qqnorm(USairpollution[,"predays"],main = "predays ");qqline(USairpollution[,"pre days"]) 
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The resulting seven plots are arranged on one page by a call to the layout matrix; see Figure 1.5. 
The plots for SO2 concentration and precipitation both deviate considerably from linearity, and 
the plots for manufacturing and population show evidence of a number of outliers. But of more 
importance is the chi-square plot for the data, which is given in Figure 1.6; the R code is identical 
to the code used to produce the chi-square plot for the body measurement data. In addition, the 
two most extreme points in the plot have been labeled with the city names to which they 
correspond using text(). 
 

 

x <- USairpollution 

cm <- colMeans(x) 
S <- cov(x) 

d <- apply(x, 1, function(x) t(x - cm) %*% solve(S) %*% (x - cm)) 

plot(qc <- qchisq((1:nrow(x) - 1/2) / nrow(x), df = 6), sd <- sort(d), 

          xlab = expression(paste(chi[6]^2, " Quantile")), 

          ylab = "Ordered distances", xlim = range(qc) * c(1, 1.1)) 

oups <- which(rank(abs(qc - sd), ties = "random") > nrow(x) - 3) 
text(qc[oups], sd[oups] - 1.5, names(oups)) 

abline(a = 0, b = 1) 
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Fig. 1.6. 𝜒2

 plot of generalised distances for USairpollution data. 
 
This example illustrates that the chi-square plot might also be useful for detecting possible 
outliers (to avoid misleading effects) in multivariate data, where informally outliers are 
“abnormal” in the sense of deviating from the natural data variability.  
 

Some Theorems 
 

Theorem 4-3: If 𝑿 ∼ 𝑵𝒒(𝝁, 𝚺), then the characteristic function of 𝑿 is 

𝝓𝑿(𝒕) = 𝒆𝒙𝒑(𝒊𝝁′𝒕 −
𝟏

𝟐
 𝒕′𝚺𝒕) . 

Recall that for a known matrices 𝑨 and 𝑩, 𝐶𝑜𝑣(𝑩𝑿) = 𝑩𝐶𝑜𝑣(𝑿)𝑩′ and  

𝐶𝑜𝑣(𝑨𝑿,𝑩𝑿) = 𝑨𝐶𝑜𝑣(𝑿)𝑩′. 

Theorem 4-4: If 𝑿 ∼ 𝑵𝒒(𝝁, 𝚺) and 𝑩 is a 𝒌 × 𝒒, 𝒃 is a 𝒌 × 𝟏, then 

𝒀 = 𝑩𝑿 + 𝒃 ∼ 𝑵𝒌(𝑩𝝁 + 𝒃,𝑩𝜮𝑩′). 
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Theorem 4-5: If 𝑿 ∼ 𝑵𝒒(𝝁, 𝚺), then the marginal distribution of any subset of 𝒌(< 𝒒) 

components of 𝑿 is k-variate normal. 

For example, partition 𝑿, 𝝁, and 𝚺 as 𝑿 = (
𝑿1

𝑿2
), 𝝁 = (

𝝁1

𝝁2
), 𝚺 = [

𝚺11 𝚺12

𝚺21 𝚺22
], where 𝑿1 and 𝝁1 

are 𝑘 × 1 and 𝚺11 is 𝑘 × 𝑘. Putting 𝑩 = [𝑰𝑘 𝟎] (𝑘 × 𝑞), 𝒃 = 𝟎 in Theorem 4-4, immediately 

shows that 𝑿1 ∼ 𝑁𝑘(𝝁1, 𝚺11). 

Counterexample: 

Suppose 𝑈1, 𝑈2, 𝑈3 are independent 𝑁(0,1) random variables and 𝑍 is an arbitrary random 

variable, independent of 𝑈1, 𝑈2, and 𝑈3. Define 𝑋1 and 𝑋2 by 

𝑋1 =
𝑈1+𝑍𝑈3

√1+𝑍2
,                   𝑋2 =

𝑈2+𝑍𝑈3

√1+𝑍2
 . 

Conditional on 𝑍, 𝑋1 ∼ 𝑁(0,1), and since this distribution does not depend on 𝑍, it is the 
unconditional distribution of 𝑋1. Similarly 𝑋2 ∼ 𝑁(0,1). Again conditional on 𝑍, the joint 
distribution of 𝑋1 and 𝑋2 is bivariate normal but the unconditional distribution clearly need not 
be. 

Theorem 4-6: If 𝑿 ∼ 𝑁𝑞(𝝁, 𝚺)and 𝑿, 𝝁, and 𝚺 are partitioned as 𝑿 = (
𝑿1

𝑿2
), 𝝁 = (

𝝁1

𝝁2
), 𝚺 =

[
𝚺11 𝚺12

𝚺21 𝚺22
], where 𝑿1 and 𝝁1 are 𝑘 × 1 and 𝚺11 is 𝑘 × 𝑘,  

 then the sub vectors 𝑿1 and 𝑿2 are independent iff 𝚺12 = 0. 

 The conditional distribution of 𝑿2 given 𝑿1 is 𝑁𝑞−𝑘(𝝁2 + 𝚺21𝚺11
−1(𝑿1 − 𝝁1), 𝚺22.1), 

where 𝚺22.1 is the Schur complement of 𝚺11 given by 𝚺22.1 = 𝚺22 − 𝚺21𝚺11
−1𝚺12. 

 

 

Central 𝒄𝒉𝒊 − 𝒔𝒒𝒖𝒂𝒓𝒆𝒅 Distribution 

If 𝑿 ∼ 𝑵𝒒(𝝁, 𝑰𝒒) then the random variable 𝒁 = (𝑿 − 𝝁)′(𝑿 − 𝝁) has the density function  

𝒇(𝒛) =
𝟏

𝟐
𝒒
𝟐𝚪 (

𝟏
𝟐𝒒)

𝒆−
𝒛
𝟐𝒛

𝒒
𝟐
−𝟏, 𝒛 > 𝟎, 

𝒁 is said to have the central 𝝌𝟐 distribution with 𝒒 df, to be written as 𝝌𝒒
𝟐(. ). 

Then 𝑬(𝒁) = 𝒒 and 𝑽𝒂𝒓(𝒁) = 𝟐𝒒. 
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Central 𝒕 −Distribution 

If 𝑿 ∼ 𝑵𝟏(𝝁, 𝝈𝟐) and 𝒁 ∼ 𝝌𝒏
𝟐  and 𝑿 be independent of Z, then the random variable  

𝒕 =

(𝑿 − 𝝁)
𝝈  

√𝒁
𝒏

 

has the density function  

𝒇(𝒕) =
𝚪 [

𝟏
𝟐 (𝒏 + 𝟏)]

√𝐧𝛑𝚪(
𝟏
𝟐𝒏)

(𝟏 +
𝒕𝟐

𝒏
)

−
𝒏+𝟏
𝟐

, 𝒕 ∈ 𝐑, 

𝒕 is said to have the central 𝒕 −distribution with 𝒏 df. 

Then 𝐸(𝑡) = 0 and 𝑉𝑎𝑟(𝑡) =
𝑛

𝑛−2
. 

 

Central 𝑭 Distribution 

If 𝒁𝟏 ∼ 𝝌𝒏𝟏
𝟐  be independent of 𝒁𝟐 ∼ 𝝌𝒏𝟐

𝟐 , then  

𝑭 =

𝒁𝟏

𝒏𝟏
 

𝒁𝟐

𝒏𝟐

 

Has the density  

𝒈(𝒇) =
𝚪[

𝟏

𝟐
(𝒏𝟏+𝒏𝟐)]

𝚪(
𝟏

𝟐
𝒏𝟏)𝚪(

𝟏

𝟐
𝒏𝟐)

(
𝒏𝟏

𝒏𝟐
)

𝒏𝟏
𝟐

𝒇
𝒏𝟏
𝟐

−𝟏 (𝟏 +
𝒏𝟏

𝒏𝟐
𝒇)

−
𝒏𝟏+𝒏𝟐

𝟐
,       𝒇 > 𝟎, 

𝑭 is said to have the central 𝑭 distribution with 𝒏𝟏 and 𝒏𝟐 df’s, to be denoted by 𝑭𝒏𝟏,𝒏𝟐
.  

Then we have 𝐸(𝐹) =
𝑛2(𝑛1)

𝑛1(𝑛2−2)
, 𝑛2 > 2 and 𝑉𝑎𝑟(𝐹) = 2 (

𝑛2

𝑛1
)
2

[
(𝑛1)2+𝑛1(𝑛2−2)

(𝑛2−2)2(𝑛2−4)
], 𝑛2 > 4. 

 

5. Wishart Distribution 
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Definitions 

Definition 1: Let 𝑾 = (𝑤𝑖𝑗) be a 𝑞 × 𝑞 symmetric matrix of random variables that is positive 

definite with probability 1, and let 𝚺 be a 𝑞 × 𝑞 positive definite matrix. If 𝑚 is an integer such 

that 𝑚 ≥ 𝑞, then 𝑾 is said to have a (nonsingular) Wishart distribution with 𝑚 df if the joint 

density function of the 
1

2
𝑞(𝑞 + 1) distinct elements of 𝑾 (in, say, the upper triangle) is  

𝑓(𝑤11, 𝑤12, … , 𝑤𝑞𝑞) = 𝑐−1 det 𝑾
𝑚−𝑞

2
−

1

2 𝑒𝑡𝑟 (−
1

2
𝚺−1𝐖), 

where 𝑒𝑡𝑟 represents the operator 𝑒𝑡𝑟𝑎𝑐𝑒, 

𝑐 = 2
𝑚𝑞

2 det 𝚺
𝑚

2 Γ𝑞 (
𝑚

2
), 

where Γ𝑞(𝑎) is the multivariate gamma function given by 

Γ𝑞(𝑎) = 𝜋
𝑞(𝑞−1)

4 ∏ Γ [𝑎 +
1

2
(1 − 𝑗)]𝑞

𝑗=1 . 

We shall write 𝑾 ∼ 𝑊𝑞(𝑚, 𝚺). 

Definition 2: Suppose that 𝒙1, 𝒙2, … , 𝒙𝑚 are independently and identically distributed (iid) as 

𝑁𝑞(0, 𝚺); then 𝑾 = ∑ 𝒙𝑖𝒙𝑖′
𝑚
𝑖=1  is said to have a Wishart distribution with 𝑚 df. 

Theorem 5-1: If 𝑾 ∼ 𝑾𝒒(𝒎, 𝚺) and 𝑪 is a 𝒅 × 𝒒 matrix of rank 𝒅, then 𝑪𝑾𝑪′ ∼ 𝑾𝒅(𝒎,𝑪𝚺𝑪′). 

Theorem 5-2: If 𝑾 ∼ 𝑾𝒒(𝒎, 𝚺) and 𝒍 is any nonzero 𝒒 × 𝟏 vector of constants, then 𝒍′𝑾𝒍 ∼

𝝈𝒍
𝟐𝝌𝒎

𝟐 , where 𝝈𝒍
𝟐 = 𝒍′𝚺𝒍 > 𝟎 (since 𝚺 > 𝟎). 

Theorem 5-3: Let 𝑿′ = (𝒙𝟏, 𝒙𝟐, … , 𝒙𝒎), where 𝒙𝒊 are iid 𝑵𝒒(𝟎, 𝚺), and let 𝒚 = 𝑿𝒍, where 𝒍 (≠ 𝟎) 

is a 𝒒 × 𝟏 vector of constants. Let 𝑨 and 𝑩 be 𝒎 × 𝒎 symmetric matrices of rank 𝒓 and 𝒔, 
respectively, and let 𝒃 be an 𝒎 × 𝟏 vector of constants; then  

 𝑿′𝑨𝑿 ∼ 𝑾𝒒(𝒓, 𝚺) iff 𝒚′𝑨𝒚 ∼ 𝝈𝒍
𝟐𝝌𝒓

𝟐 for any 𝒍, where 𝝈𝒍
𝟐 = 𝒍′𝚺𝐥.  

 𝑿′𝑨𝑿 and 𝑿′𝑩𝑿 have independent Wishart distributions with 𝒓 and 𝒔 df, respectively, iff 
𝒚′𝑨𝒚

𝝈𝒍
𝟐  and 

𝒚′𝑩𝒚

𝝈𝒍
𝟐  are independently distributed as chi-square with 𝒓 and 𝒔 df, respectively, 

for any 𝒍.  

 𝑿′𝒃 and 𝑿′𝑨𝑿 are independently distributed as 𝑵𝒒 and 𝑾𝒒(𝒓, 𝚺), respectively, iff 𝒚′𝒃 

and  
𝒚′𝑨𝒚

𝝈𝒍
𝟐  are independently distributed as normal and 𝝌𝒓

𝟐, respectively, for any 𝒍. 

 𝑿′𝑨𝑿 ∼ 𝑾𝒒(𝒓, 𝚺) iff 𝑨𝟐 = 𝑨. 

 The Wishart variables 𝑿′𝑨𝑿 and  𝑿′𝑩𝑿 are independent iff 𝑨𝑩 = 𝟎. 
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 𝑿′𝑨𝑿 and 𝑿′𝒃 are independently distributed as 𝑾𝒒 and 𝑵𝒒, respectively, iff 𝑨𝒃 = 𝟎 and 

𝑨𝟐 = 𝑨. 

Theorem 5-4: If 𝑾 ∼ 𝑾𝒒(𝒎, 𝚺), then the characteristic function of 𝑾 [joint characteristic 

function of the 
𝟏

𝟐
𝒒(𝒒 + 𝟏) variables 𝒘𝒊𝒋 𝟏 ≤ 𝒊 ≤ 𝒋 ≤ 𝒒] is  

𝝓(𝚯) = 𝑬 [𝒆𝒙𝒑 (𝒊 ∑ 𝜽𝒋𝒌𝒘𝒋𝒌
𝒒
𝒋≤𝒌 )] = 𝒅𝒆𝒕 (𝑰𝒒 − 𝒊𝚪𝚺)

−
𝒎

𝟐 , 

where 𝚪 = (𝜸𝒊𝒋) for 𝒊, 𝒋 = 𝟏,… , 𝒒 with 𝜸𝒊𝒋 = (𝟏 + 𝜹𝒊𝒋)𝜽𝒊𝒋, 𝜽𝒋𝒊 = 𝜽𝒊𝒋, and 𝜹𝒊𝒋 is the Kronecker 

delta given by  

𝜹𝒊𝒋 = {
𝟏 𝒊 = 𝒋
𝟎 𝒊 ≠ 𝒋

. 

Then 𝐸(𝑾) = 𝑚𝚺 and 𝐶𝑜𝑣(𝑤𝑖𝑗, 𝑤𝑘𝑙) = 𝑚(𝜎𝑖𝑘𝜎𝑗𝑙 + 𝜎𝑖𝑙𝜎𝑗𝑘). 

 

Noncentral 𝒄𝒉𝒊 − 𝒔𝒒𝒖𝒂𝒓𝒆𝒅 Distribution 

Theorem 5-5: If 𝑿 ∼ 𝑵𝒒(𝝁, 𝑰𝒒) then the random variable 𝒁 = 𝑿′𝑿 has the density function  

𝒇(𝒛) = 𝒆−
𝜹
𝟐 𝒐𝑭𝟏 (

𝟏

𝟐
𝒒;

𝟏

𝟒
𝜹𝒛)

𝟏

𝟐
𝒒
𝟐𝚪 (

𝟏
𝟐𝒏)

𝒆−
𝒛
𝟐𝒛

𝒒
𝟐
−𝟏 = ∑

𝟏

𝒌! (
𝟏
𝟐𝒒)

𝒌

(
𝟏
𝟒𝜹𝒛)

𝒌

𝒆−
𝜹
𝟐

𝟐
𝒒
𝟐𝚪 (

𝟏
𝟐𝒏)

∞

𝒌=𝟎
𝒆−

𝒛
𝟐𝒛

𝒒
𝟐
−𝟏,

𝒛 > 𝟎, 

where 𝜹 = 𝝁′𝝁, (𝒂)𝒌 = 𝒂(𝒂 + 𝟏)… (𝒂 + 𝒌 − 𝟏). 𝒁 is said to have the noncentral 𝝌𝟐 

distribution with 𝒒 df and noncentrality parameter 𝜹, to be written as 𝝌𝒒
𝟐(𝜹). 

Then 𝑬(𝒁) = 𝒒 + 𝜹 and 𝑽𝒂𝒓(𝒁) = 𝟐𝒒 + 𝟒𝜹. 

 

Noncetral 𝒕 − Distribution 

If 𝑿 ∼ 𝑵𝟏(𝝁, 𝟏) and 𝒁 ∼ 𝝌𝒏
𝟐  and 𝑿 be independent of Z, then the random variable  

𝒕 =
𝑿 

√𝒁
𝒏

 

has the density function  

𝒕 is said to have the noncentral 𝒕 −distribution with 𝒏 df and noncentrality parameter 𝝁. 
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Then            𝐸(𝑡) = 𝝁√𝑛/2
Γ[

1

2
(𝒏−𝟏)]

Γ(
1

2
𝒏)

, 𝑛 > 1  

and 

 𝑉𝑎𝑟(𝑡) =
𝑛(1+𝜇2)

𝑛−2
−

𝜇2𝑛

2
(

Γ[
1

2
(𝒏−𝟏)]

Γ(
1

2
𝒏)

)

2

, 𝑛 > 2. 

 

Noncentral 𝑭 Distribution 

Theorem 5-6: If 𝒁𝟏 ∼ 𝝌𝒏𝟏
𝟐 (𝜹) be independent of 𝒁𝟐 ∼ 𝝌𝒏𝟐

𝟐 , then  

𝑭 =

𝒁𝟏

𝒏𝟏
 

𝒁𝟐

𝒏𝟐

 

Has the density  

𝒈(𝒇) = ∑
(
𝟏

𝟐
(𝒏𝟏+𝒏𝟐))

𝒌

𝒌!(
𝟏

𝟐
𝒏𝟏)

𝒌

(
𝒏𝟏

𝒏𝟐
)

𝒏𝟏
𝟐

+𝒌 𝚪[
𝟏

𝟐
(𝒏𝟏+𝒏𝟐)]

𝚪(
𝟏

𝟐
𝒏𝟏)𝚪(

𝟏

𝟐
𝒏𝟐)

𝜹𝒌𝒆
−

𝜹
𝟐

𝟐𝒌
∞
𝒌=𝟎

𝒇
𝒏𝟏
𝟐

+𝒌−𝟏

(𝟏+
𝒏𝟏
𝒏𝟐

𝒇)

𝒏𝟏+𝒏𝟐
𝟐

+𝒌
,       𝒇 > 𝟎, 

𝑭 is said to have the noncentral 𝑭 distribution with 𝒏𝟏 and 𝒏𝟐 df and noncentrality parameter 𝜹, 
to be denoted by 𝑭𝒏𝟏,𝒏𝟐

(𝜹).  

Then we have 𝐸(𝐹) =
𝑛2(𝑛1+𝛿)

𝑛1(𝑛2−2)
, 𝑛2 > 2 and 𝑉𝑎𝑟(𝐹) = 2 (

𝑛2

𝑛1
)
2

[
(𝑛1+𝛿)2+(𝑛1+2𝛿)(𝑛2−2)

(𝑛2−2)2(𝑛2−4)
], 𝑛2 > 4. 

 

Noncentral Wishart Distribution 

 

Let 𝑿′ = (𝒙1, 𝒙2, … , 𝒙𝑚), where 𝒙𝑖 are independently distributed as 𝑁𝑞(𝝁𝑖, 𝚺), (𝑖 = 1,… ,𝑚). 

Then 𝑾 = 𝑿′𝑿 has noncentral distribution denoted by 𝑾 ∼ 𝑊𝑞(𝑚, 𝚺,𝚽), with noncentrality 

matrix parameter 𝚽 given by 

𝜱 = ∑ (𝜮−
1

2𝝁𝑖) (𝜮−
1

2𝝁𝑖)
′

𝑚
𝑖=1 = 𝜮−

1

2𝑴′𝑴𝜮−
1

2, 

where 𝑴 = (𝝁1, 𝝁2, … , 𝝁𝑚)′.  

Note that  

𝐸(𝑿′)𝐸(𝑿) = 𝑴′𝑴 = ∑ 𝝁𝑖𝝁𝑖′
𝑚
𝑖=1 , 𝐸(𝑾) = 𝑚𝚺 + 𝑴′𝑴. 
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6. Hotelling’s 𝑻𝟐 Distribution 
 

Recall that if ∼ 𝑁(𝜇, 𝜎2) ⊥ 𝑊 ∼ 𝜎2𝜒𝑚
2  ; then 𝑇 =

(𝑋−𝜇)/𝜎

(𝑊/𝑚𝜎2)
1
2

∼ 𝑡𝑚 , where 𝑡𝑚 is the 𝑡-distribution 

with 𝑚 df. Therefore, 𝑇2 = 𝑚(𝑋 − 𝜇)𝑊−1(𝑋 − 𝜇) ∼ 𝐹1,𝑚, since we have the identity 𝑡𝑚
2 ≡

𝐹1,𝑚. 

 

For the multivariate case 𝑿 ∼ 𝑁𝑞(𝝁, 𝚺), 𝑾 ∼ 𝑊𝑞(𝑚, 𝚺), 𝑿 is statistically independent of 𝑾, the 

Hotelling’s 𝑇2 statistics is given by 

𝑇2 = 𝑚(𝑿 − 𝝁)′𝑾−1(𝑿 − 𝝁). 

Theorem 6-1: Let 𝑻𝟐 = 𝒎𝒚′𝑾−𝟏𝒚, where 𝒚 ∼ 𝑵𝒒(𝟎, 𝚺) is independent of 𝑾 ∼ 𝑾𝒒(𝒎, 𝚺). Then 
𝒎−𝒒+𝟏

𝒒

𝑻𝟐

𝒎
∼ 𝑭𝒒,𝒎−𝒒+𝟏. 

 

Theorem 6-2: If 𝑿𝟏, … , 𝑿𝑵 are independent 𝑵𝒒(𝝁, 𝚺) random vectors and 𝑵 > 𝒒 then the 

maximum likelihood (ML) estimates 𝝁 and 𝚺 are �̂� = �̅� and  �̂� =
𝒏

𝑵
𝑺, where 𝒏 = 𝑵 − 𝟏 and �̅� 

and 𝑺 are given by �̅� =
𝟏

𝑵
∑ 𝑿𝒊

𝑵
𝒊=𝟏 , and 𝑺 =

𝟏

𝒏
∑ (𝑿𝒊 − �̅�)(𝑿𝒊 − �̅�)′𝑵

𝒊=𝟏 .  

Proof: Ignoring the constant, the likelihood functions is 

𝐿(𝝁, 𝜮) = 𝑑𝑒𝑡 𝜮−
𝑁

2 𝑒𝑡𝑟 (−
1

2
𝜮−1𝑨)𝑒𝑥𝑝 [−

1

2
𝑁(�̅� − 𝝁)′𝜮−1(�̅� − 𝝁)], 

where 𝑨 = ∑ (𝑿𝑖 − �̅�)(𝑿𝑖 − �̅�)′𝑁
𝑖=1 . 

Now 𝐿(𝝁, 𝚺) ≤ det 𝚺−
𝑁

2 𝑒𝑡𝑟 (−
1

2
𝚺−1𝐀), 

with equality iff 𝝁 = �̅�, where we have used the fact that (�̅� − 𝝁)′𝜮−1(�̅� − 𝝁) = 0 iff 𝝁 = �̅�. 

This shows that �̅� is the ML estimate of 𝝁 for all 𝚺. It remains to maximize the function 

𝐿(�̅�, 𝜮) = 𝑑𝑒𝑡 𝜮−
𝑁

2 𝑒𝑡𝑟 (−
1

2
𝜮−1𝑨), 

or equivalently the function  
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g(𝚺) = log L(�̅�, 𝚺) = −
1

2
N log det 𝚺 −

1

2
tr(𝚺−1𝐀)                                                   

=
1

2
N log det 𝚺−1𝐀 −

1

2
tr(𝚺−1𝐀) −

1

2
N log det 𝐀

=
1

2
N log det𝐀

1
2𝚺−1𝐀

1
2 −

1

2
tr (𝐀

1
2𝚺−1𝐀

1
2) −

1

2
N log det 𝐀

=
1

2
∑ (N log λi − λi)

q

i=1
−

1

2
N log det 𝐀 

where 𝜆1, … , 𝜆𝑞 are the latent roots of 𝑨
1

2𝚺−1𝐀
1

2 , i.e., of 𝚺−1𝐀. Since the function  

𝑓(𝜆) = 𝑁 log 𝜆 − 𝜆 

has a unique maximum at 𝜆 = 𝑁 of 𝑁 log 𝑁 − 𝑁 it follows that  

𝑔(𝚺) ≤
1

2
𝑁𝑞 log𝑁 −

1

2
𝑞𝑁 −

1

2
𝑁 log det 𝑨, 

or 𝐿(�̅�, 𝚺) ≤ 𝑁
𝑞𝑁

2 𝑒−
𝑞𝑁

2 det 𝑨−
𝑁

2 , with equality iff 𝜆𝑖 = 𝑁 (𝑖 = 1,… , 𝑞). This last condition is 

equivalent to 𝑨
1

2𝜮−1𝑨
1

2 = 𝑁𝑰𝑞 and hence to 𝚺 =
1

𝑁
𝑨. Therefore we conclude that 

𝐿(𝝁, 𝚺) ≤ 𝑁
𝑁𝑞

2 𝑒−
𝑞𝑁

2 det 𝑨−
𝑁

2 , with equality iff 𝝁 = �̅� and 𝚺 =
1

𝑁
𝑨, and the proof is complete. 

Note that 𝑺 ∼ 𝑊𝑞 (𝑛,
1

𝑛
𝚺) ,      𝑛 = 𝑁 − 1. 

Theorem 6-3: If 𝑿 ∼ 𝑵𝒒(𝝁, 𝚺), then (𝑿 − 𝝁)′𝚺−𝟏(𝑿 − 𝝁) ∼ 𝝌𝒒
𝟐, and 𝑿′𝜮−𝟏𝑿 ∼ 𝛘𝐪

𝟐(𝛅), where 

𝜹 = 𝝁′𝜮−𝟏𝝁. 

Theorem 6-4: Let �̅� and 𝑺 be the mean and covariance matrix formed from a random sample of 
size 𝑵 = 𝒏 + 𝟏 from 𝑵𝒒(𝝁, 𝚺) distribution (𝒏 ≥ 𝒒), and let 𝑻𝟐 = 𝑵�̅�′𝑺−𝟏�̅�. Then  

𝒏 − 𝒒 + 𝟏

𝒒

𝑻𝟐

𝒏
 

is 𝑭𝒒,𝒏−𝒒+𝟏(𝜹), 𝜹 = 𝑵𝝁′𝚺−𝟏𝝁. 

 

7. Multivariate Beta Distribution 
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Univariate 

Recall that if 𝑋 ∼ 𝜒𝑛
2 is independent of 𝑌 ∼ 𝜒𝑚

2 , then 𝑈 =
𝑋

𝑋+𝑌
 has beta type 1 distribution 

denoted by 𝑈 ∼ 𝐵1(𝑛,𝑚) with the following density 

𝑓(𝑢) =
𝑢𝑛−1(1−𝑢)𝑚−1

𝐵(𝑛,𝑚)
,     0 < 𝑢 < 1, 

where 𝐵(𝑛,𝑚) =
Γ(𝑛)Γ(𝑚)

Γ(𝑛+𝑚)
. The beta type 1 distribution is well known in Bayesian methodology 

as a prior distribution on the success probability of a binomial distribution. Also 𝑉 =
𝑈

1−𝑈
=

𝑋

𝑌
 has 

beta type 2 or inverted beta distribution denoted by 𝑉 ∼ 𝐵2(𝑛,𝑚) with the following density 

𝑓(𝑣) =
𝑣𝑛−1(1+𝑣)−(𝑛+𝑚)

𝐵(𝑛,𝑚)
,      𝑣 > 0. 

Matrix variate 
Let 𝑿 ∼ 𝑊𝑞(𝑛, 𝚺) be independent of 𝒀 ∼ 𝑊𝑞(𝑚, 𝚺), where 𝑛,𝑚 ≥ 𝑞. By analogy with the above 

univariate approach, we could consider 𝑿(𝑿 + 𝒀)−1 and 𝑿𝒀−1, but these matrices are not symmetric 

and do not lead to useful density functions. However, since 𝑿 and 𝒀, and hence 𝑿 + 𝒀, are positive 

definite matrices with probability 1, we can obtain symmetry by defining the positive definite matrices  

𝑼 = (𝑿 + 𝒀)−
1
2𝑿(𝑿 + 𝒀)−

1
2      𝑎𝑛𝑑      𝑽 = 𝒀−

1
2𝑿𝒀−

1
2 

where 𝒀−
1

2 and (𝑿 + 𝒀)−
1

2 are the symmetric square roots of 𝒀 and (𝑿 + 𝒀), respectively.  

Theorem 7-1: 𝑼 has matrix variate beta type I, denoted by 𝑼 ∼ 𝑩𝒒
𝑰 (𝒏,𝒎), and the joint density 

of the 
𝟏

𝟐
𝒒(𝒒 + 𝟏) distinct elements of 𝑼, namely, 𝒈(𝒖𝟏𝟏, 𝒖𝟏𝟐, … , 𝒖𝒒𝒒) [or 𝒈(𝑼) for short] is 

given by  

𝒈(𝑼) =
𝟏

𝑩𝒒(𝒏,𝒎)
𝐝𝐞𝐭𝑼𝒏−

𝟏

𝟐
(𝒒+𝟏) 𝐝𝐞𝐭(𝑰𝒒 − 𝑼)

𝒎−
𝟏

𝟐
(𝒒+𝟏)

,     𝟎 < 𝑼 < 𝑰𝒒, 

where 𝒏,𝒎 >
𝟏

𝟐
(𝒒 − 𝟏), and 𝑩𝒒(𝒏,𝒎) is the multivariate beta function given by 

𝑩𝒒(𝒏,𝒎) =
𝚪𝒒(𝒏)𝚪𝒒(𝒎)

𝚪𝒒(𝒏+𝒎)
. 

Note that under the meaning of partial lowner ordering, for two matrices 𝑨 and 𝑩, 𝑨 > 𝑩, means 𝑨 − 𝑩 

is positive definite. 

Theorem 7-2: 𝑽 has matrix variate beta type II, denoted by 𝑽 ∼ 𝑩𝒒
𝑰𝑰(𝒏,𝒎), and the joint density 

of the 
𝟏

𝟐
𝒒(𝒒 + 𝟏) distinct elements of 𝑽, namely, 𝒉(𝒗𝟏𝟏, 𝒗𝟏𝟐, … , 𝒗𝒒𝒒) [or 𝒉(𝑽) for short] is given 

by  

𝒉(𝑽) =
𝟏

𝑩𝒒(𝒏,𝒎)
𝐝𝐞𝐭 𝑽𝒏−

𝟏

𝟐
(𝒒+𝟏) 𝐝𝐞𝐭(𝑰𝒒 + 𝑽)

−(𝒏+𝒎)
,     𝑽 > 𝟎, 
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where 𝒏,𝒎 >
𝟏

𝟐
(𝒒 − 𝟏). 

 

 
 


