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1. Introduction 
 

According to Chambers, Cleveland, Kleiner, and Tukey (1983), "There is no 
statistical tool that is as powerful as a well-chosen graph". Certainly graphical 
presentation has a number of advantages over tabular displays of numerical 
results, not least in creating interest and attracting the attention of the viewer. 

What is a graphical display?  
 
Data graphics visually display measured quantities by means of the combined use of 
points, lines, a coordinate system, numbers, symbols, words, shading and color. 

 
Some of the advantages of graphical methods 

 
• In comparison with other types of presentation, well-designed charts are more effective in 

creating interest and in appealing to the attention of the reader. 
• Visual relationships as portrayed by charts and graphs are more easily grasped and more 

easily remembered. 
• The use of charts and graphs saves time since the essential meaning of large measures of 

statistical data can be visualized at a glance. 
• Charts and graphs provide a comprehensive picture of a problem that makes for a more 

complete and better balanced understanding than could be derived from tabular or textual 
forms of presentation. 

• Charts and graphs can bring out hidden facts and relationships and can stimulate, as well 
as aid, analytical thinking and investigation. 

 
 

Goals for graphical displays of data 
 

• To provide an overview; 
• To tell a story; 
• To suggest hypotheses; 
• To criticize a model. 

 



Do not forget to load the package “MVA” 

Under R-2.15.1 

Depends HSAUR2 
http://www.r-project.org/    

 

  



2. Graphics 

The scatterplot 
 

The scatterplot is the standard for representing continuous bivariate data but, as we shall see 
later in this chapter, it can be enhanced in a variety of ways to accommodate information about 
other variables. 
To illustrate the use of the scatterplot and a number of other techniques to be discussed, we 
shall use the air pollution in US cities data introduced in the previous chapter (see Table 1.5). 
Let's begin our examination of the air pollution data by taking a look at a basic scatterplot of 
the two variables manu and popul. For later use, we first set up two character variables that 
contain the labels to be printed on the two axes: 
 
mlab <- "Manufacturing enterprises with 20 or more workers" 
plab <- "Population size (1970 census) in thousands" 
plot(popul ~ manu, data = USairpollution, xlab = mlab, ylab = plab) 
 

The resulting scatterplot is shown in Figure 2.1. 

 

Fig. 2.1. Scatterplot of manu and popul. 

The plot clearly uncovers the presence of one or more cities that are some way from the 
remainder, knowing as outliers. To identify the outliers we use 
 
plot(popul ~ manu, data = USairpollution, xlab = mlab, ylab = plab) 
text(popul ~ manu, data=USairpollution, xlab = mlab, ylab = plab , labels=cities) 



 
The resulting scatterplot is shown in Figure 2.2. 

 

 
Fig. 2.2. Scatterplot of manu and popul. 

 
From Figure 2.2, we can see that the outlying points show themselves in scatterplot of the 
variables. The most extreme outlier corresponds to Chicago, and other slightly less extreme 
outliers correspond to Philadelphia and Detroit. Each of these cities has a considerably larger 
population than other cities and also many more manufacturing enterprises with more than 20 
workers. 
 
In Figure 2.2, the marginal distributions are shown as rug plots on each axis (produced by rug()). 
 
plot(popul ~ manu, data = USairpollution, xlab = mlab, ylab = plab) 
text(popul ~ manu, data=USairpollution, xlab = mlab, ylab = plab , 
labels=cities) 
rug(USairpollution[,c("manu")], side = 1) 
rug(USairpollution[,c("popul")], side = 2) 
 
manu<-x[,c("manu")] 
hist(manu) 
boxplot(manu) 



 

The bivariate boxplot 
 

In Figure 2.2, identifying Chicago, Philadelphia, and Detroit as outliers is unlikely to invoke much 
argument, but what about Houston and Cleveland? In many cases, it might be helpful to have a 
more formal and objective method for labeling observations as outliers, and such a method is 
provided by the bivariate boxplot, which is a two-dimensional analogue of the boxplot for 
univariate data. The bivariate boxplot is based on calculating “robust” measures of location, 
scale, and correlation; it consists essentially of a pair of concentric ellipses, one of which (the 
“hinge”) includes 50% of the data and the other (called the “fence”) of which delineates 
potentially troublesome outliers. In addition, resistant regression lines of both � on � and � on 
� are shown, with their intersection showing the bivariate location estimator. The acute angle 
between the regression lines will be small for a large absolute value of correlations and large 
for a small one. (Using robust measures of location, scale, etc., help to prevent the possible 
“masking” of multivariate outliers if the usual measures are employed when these may be 
distorted by the presence of the outliers in the data.) The scatterplot of manu and popul 
including the bivariate boxplot is shown in Figure 2.4. Figure 2.4 clearly tells us that Chicago, 



Philadelphia, Detroit, and Cleveland should be regarded as outliers but not Houston, because it 
is on the “fence” rather than outside the “fence”. 
require(grid) require(lattice) require(scatterplot3d) require(HSAUR2) require(MVA) 
outcity<- match(lab<- c("Chicago",  "Detroit", "Cleveland", "Philadelphia"),   
rownames(USairpollution)) 
x <- USairpollution[, c("manu", "popul")] 
bvbox(x, mtitle = "", xlab = mlab, ylab = plab) 
text(x[,c("manu")][outcity], x[,c("popul")][outcity], labels = lab,cex = 0.7) 

 
Fig. 2.4. Scatterplot of manu and popul showing the bivariate boxplot of the data. 

 
Suppose now that we are interested in calculating the correlation between manu and popul. 
The observations identified as outliers may then be excluded from the calculation of the 
correlation coefficient. With the help of the bivariate boxplot in Figure 2.4, we have identified 
Chicago, Philadelphia, Detroit, and Cleveland as outliers in the scatterplot of manu and popul. 
The R code for finding the two correlations is 
 
manu<-x[,c("manu")] 
popul<-x[,c("popul")] 
cor(manu, popul) 
[1] 0.9553 
outcity<-match(c("Chicago","Detroit","Cleveland","Philadelphia"), 
rownames(USairpollution)) 
cor(manu[-outcity], popul[-outcity]) 
[1] 0.7956 
 
The match() function identifies rows of the data frame USairpollution corresponding to the 
cities of interest, and the subset starting with a minus sign removes these units before the 
correlation is computed. Calculation of the correlation coefficient between the two variables 
using all the data gives a value of 0.96, which reduces to a value of 0.8 after excluding the four 
outliers. 



The convex hull of bivariate data 
 

An alternative approach to using the scatterplot combined with the bivariate boxplot to deal 
with the possible problem of calculating correlation coefficients without the distortion often 
caused by outliers in the data is convex hull trimming, which allows robust estimation of the 
correlation. The convex hull of a set of bivariate observations consists of the vertices of the 
smallest convex polyhedron in variable space within which or on which all data points lie. 
Removal of the points lying on the convex hull can eliminate isolated outliers without disturbing 
the general shape of the bivariate distribution. A robust estimate of the correlation coefficient 
results from using the remaining observations.  
We first find the convex hull of the USairpollution data (i.e., the observations defining the 
convex hull) using the following R code: 
 
hull <- chull(manu, popul) 

[1] 9 15 41 6 2 18 16 14 7 

plot(manu, popul, pch = 1, xlab = mlab, ylab = plab) 
polygon(manu[hull], popul[hull], density = 15, angle = 30) 

 

Fig. 2.5. Scatterplot of manu against popul showing the convex hull of the data. 

 



To calculate the correlation coefficient after removal of the points defining the convex hull 
requires the code 
cor(manu[-hull],popul[-hull]) 
[1] 0.9225 
 
The resulting value of the correlation is now 0.923 and thus is higher compared with the 
correlation estimated after removal of the outliers identified by using the bivariate boxplot, 
namely Chicago, Philadelphia, Detroit, and Cleveland. 

The chi-plot 
By scatterplot it is often difficult to judge whether or not the variables are independent. 
Consequently it is sometimes helpful to augment the scatterplot with an auxiliary display in 
which independence is itself manifested in a characteristic manner. The chi-plot1 is designed to 
address the problem.  
 

 

                                                           
1 Under independence, the joint distribution of two random variables X and Y can be computed 
from the product of the marginal distributions. The chi-plot transforms the measurements 
(��, … , ���) and (��, … , ��) into values (��, … , ��) and (��, … , ��), which, plotted in a 
scatterplot, can be used to detect deviations from independence. Under independence, these 
values are asymptotically normal with mean zero; i.e., the ��  values should show a non-
systematic random actuation around zero. The �� values measure the distance of unit � from 
the “center” of the bivariate distribution. 
 



 
 
An R function for producing chi-plots is chiplot(). To illustrate the chi-plot, we shall apply it to 
the manu and popul variables of the air pollution data using the code 
 
plot(manu, popul, xlab = mlab, ylab = plab, cex.lab = 0.9) 
chiplot(manu, popul) 
 
The result is Figure 2.6, which shows the scatterplot of manu plotted against popul alongside 
the corresponding chi-plot. Departure from independence is indicated in the latter by a lack of 
points in the horizontal band indicated on the plot. Here there is a very clear departure since 
there are very few of the observations in this region. 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.6. Chi-plot for manu and popul showing a clear deviation from independence. 

 

 

The scatterplot matrix 
 

There are seven variables in the air pollution data, which between them generate 21 possible 
scatterplots. To aid overall comprehension of the data, the scatterplot matrix is used. A 
scatterplot matrix is nothing more than a square, symmetric grid of bivariate scatterplots. The 
grid has � rows and columns, each one corresponding to a different variable. Each of the grid's 
cells shows a scatterplot of two variables. Variable � is plotted against variable � in the ��th cell, 
and the same variables appear in cell ��, with the �- and �-axes of the scatterplots 
interchanged. The reason for including both the upper and lower triangles of the grid, is that it 
enables a row and a column to be visually scanned to see one variable against all others, with 
the scales for the one variable lined up along the horizontal or the vertical. As a result, we can 
visually link features on one scatterplot with features on another, and this ability greatly 
increases the power of the graphic. 
The scatterplot matrix for the air pollution data is shown in Figure 2.10. The plot was produced 
using the function pairs(), here with slightly enlarged dot symbols, using the arguments pch = 
"." and cex = 1.5. 
 
pairs(USairpollution, pch = ".", cex = 1.5) 
 
The scatterplot matrix clearly shows the presence of possible outliers in many panels and the 
suggestion that the relationship between the two aspects of rainfall, namely precip, predays, 
and SO2 might be non-linear. In Figure 2.11, the pairs() function was customized by a small 



function specified to the panel argument: in addition to plotting the � and � values, a 
regression line obtained via function lm() is added to each of the panels. 
 
pairs(USairpollution, panel = function (x, y, ...) { points(x, y, ...); abline(lm(y ~ 
x), col = "grey") }, pch = ".", cex = 1.5) 
 
Now the scatterplot matrix reveals that there is a strong linear relationship between SO2 and 
manu and between SO2 and popul, but the (3, 4) panel shows that manu and popul are 
themselves very highly related and thus predictive of SO2 in the same way. Figure 2.11 also 
underlines that assuming a linear relationship between SO2 and precip and SO2 and predays, as 
might be the case if a multiple linear regression model is fitted to the data with SO2 as the 
dependent variable, is unlikely to fully capture the relationship between each pair of variables. 
 

 
                                                                                       

 
 

Fig. 2.10. Scatterplot matrix of the air pollution data. 



 
 
 

 
Fig. 2.11. Scatterplot matrix of the air pollution data showing the linear fit of each pair of variables. 

  



3. Enhancing the scatterplot with estimated bivariate densities 
 

As we have seen above, scatterplots and scatterplot matrices are good at highlighting outliers 
in a multivariate data set. But in many situations another aim in examining scatterplots is to 
identify regions in the plot where there are high or low densities of observations that may 
indicate the presence of distinct groups of observations; i.e., “clusters”. It is often very helpful 
to add some type of bivariate density estimate to the scatterplot. A bivariate density estimate is 
simply an approximation to the bivariate probability density function of two variables obtained 
from a sample of bivariate observations of the variables. If, of course, we are willing to assume 
a particular form of the bivariate density of the two variables, for example the bivariate normal, 
then estimating the density is reduced to estimating the parameters of the assumed 
distribution. More commonly, however, we wish to allow the data to speak for themselves and 
so we need to look for a non-parametric estimation procedure. The simplest such estimator 
would be a two-dimensional histogram, but for small and moderately sized data sets that is not 
of any real use for estimating the bivariate density function simply because most of the “boxes” 
in the histogram will contain too few observations; and if the number of boxes is reduced, the 
resulting histogram will be too coarse a representation of the density function. Other non-
parametric density estimators attempt to overcome the deficiencies of the simple two-
dimensional histogram estimates by “smoothing” them in one way or another. A variety of non-
parametric estimation procedures are proposed that here we give a brief description of just 
one popular class of estimators, namely kernel density estimators. 
 
library(squash) 
x <- rnorm(100)  
y <- rnorm(100) 
hist2(x, y) 

Kernel density estimators 
 

One Dimension 
 
From the definition of a probability density, if the random variable � has a density � 

�(�) = lim
�→�

1
2ℎ

 P(� − ℎ < � < � + ℎ). 

For any given ℎ, a naive estimator of P(� − ℎ < � < � + ℎ) is the proportion of the 
observations ��, … , �� falling in the interval (� − ℎ, � + ℎ), 

��(�) = �
���

 ∑ �(�� ∈ (� − ℎ, � + ℎ))�
��� ; 

i.e., the number of ��, … , �� falling in the interval (� − ℎ, � + ℎ) divided by 2�ℎ. If we 
introduce a weight function � given by 



�(�) = �
�
�

|�| < 1
0 �. �.

, 

Then the naive estimator can be written as 
��(�) = �

��
 ∑ �

�
 � �����

�
��

��� . 
 
Unfortunately, this estimator is not a continues function and is not particularly satisfactory for 
practical density estimation. It does, however, lead naturally to the kernel estimator defined by 

��(�) = �
��

 ∑ � �����
�

��
��� = �

��
 ∑ ��(� − ��)�

��� , 
where � is known as the kernel function and ℎ is the bandwidth or smoothing parameter.  
In Statistics, a kernel is a non-negative real-valued integrable function satisfying 
� �(�)�� = 1�

�� . 
Usually, but not always, the kernel function will be a symmetric density function; 
for example, the normal. 
In order to compute the MSE of the estimate of �(. ), we need the bias and variance of ��(. ). Let 
� be a random variable having density �(. ). Then we have for the specific point � ∈ ℝ we have 
 

����(�)� = ����(� − �)� = � ��(� − �)�(�)�� = � �(�)�(� − ℎ�)��. 
 

Expanding �(� − ℎ�) in a Taylor series about � we obtain 

�(� − ℎ�) = �(�) − ℎ���(�) +
1
2

 ℎ������(�) + �(ℎ�) 

uniformly in �. This leads to  

����(�)� = �(�) +
1
2

 ℎ����(�) � ���(�)�� + �(ℎ�) 

where we have used  
� �(�)�� = 1,                   � ��(�)�� = 0,                            � ���(�)�� = ��

� < ∞. 
 

Three commonly used kernel functions are 
 

1. rectangular, 

                      �(�) = �
�
�

|�| < 1
0 �. �.

= �
�

 1�|�|���, 

 
2. triangular, 

                      �(�) = �1 − |�| |�| < 1
0 �. �.

= (1 − |�|)1�|�|���, 

 
3. Gaussian, 

                      �(�) = �
√��

 ���
� ��

. 
 
The three kernel functions are implemented in R as shown in Figure 2.12. For some grid �, the 
kernel functions are plotted using the R statements in Figure 2.12. The kernel estimator �� is a 



sum of “bumps” placed at the observations. The kernel function determines the shape of the 
bumps, while the window width ℎ determines their width. Figure 2.13 shows the individual 
bumps ���ℎ��� �����

�
� as well as the estimate �� obtained by adding them up for an artificial 

set of data points, 
 
 
 
rec <- function(x) (abs(x) < 1) * 0.5 
tri <- function(x) (abs(x) < 1) * (1 - abs(x)) 
gauss <- function(x) 1/sqrt(2*pi) * exp(-(x^2)/2) 
x <- seq(from = -3, to = 3, by = 0.001) 
plot(x, rec(x), type = "l", ylim = c(0,1), lty = 1, ylab = expression(K(x))) 
lines(x, tri(x), lty = 2) 
lines(x, gauss(x), lty = 3) 
legend("topleft", legend = c("Rectangular", "Triangular", "Gaussian"), lty = 1:3, 
title = "kernel functions", bty = "n") 

 
Fig. 2.12. Three commonly used kernel functions. 

 
x <- c(0, 1, 1.1, 1.5, 1.9, 2.8, 2.9, 3.5) 
n <- length(x) 
 
For a grid 
xgrid <- seq(from = min(x) - 1, to = max(x) + 1, by = 0.01) 
 
on the real line, we can compute the contribution of each measurement in �, with ℎ = 0.4, by the 
Gaussian kernel (defined in Figure 2.12, line 3) as follows: 
h <- 0.4 
bumps <- sapply(x, function(a) gauss((xgrid - a)/h)/(n * h)) 
 



A plot of the individual bumps and their sum, the kernel density estimate ��, is shown in Figure 
2.13. 
 
plot(xgrid, rowSums(bumps), ylab = expression(hat(f)(x)), type = "l", xlab = "x", 
lwd = 2) 
rug(x, lwd = 2) 
out <- apply(bumps, 2, function(b) lines(xgrid, b)) 

 
Fig. 2.13. Kernel estimate showing the contributions of Gaussian kernels evaluated for the individual observations 
with bandwidth h = 0:4. 
 
Some other common kernels: 
 

4. Epanechnikov 
�(�) = �

�
(1 − ��)1�|�|���, 

5. Quartic (biweight) 
�(�) = ��

��
(1 − ��)�1�|�|���, 

6. Triweight 
�(�) = ��

��
(1 − ��)�1�|�|���, 

7. Tricube 
�(�) = ��

��
(1 − |�|�)�1�|�|���, 

8. Cosine 
�(�) = �

�
cos ��

�
�� 1�|�|���. 

Two Dimension 
 
The kernel density estimator considered as a sum of “bumps” centered at the observations has 
a simple extension to two dimensions (and similarly for more than two dimensions). The 
bivariate estimator for data (��, ��), (��, ��), … , (��, ��) is defined as 



��(�, �) = �
�����

 ∑ � �����
��

, ����
��

��
��� . 

In this estimator, each coordinate direction has its own smoothing parameter, ℎ� or ℎ�. An 
alternative is to scale the data equally for both dimensions and use a single smoothing 
parameter. 
For bivariate density estimation, a commonly used kernel function is the standard bivariate 
normal density 

�(�, �) = �
��

 ���
� (�����). 

Another possibility is the bivariate Epanechnikov kernel given by 

�(�, �) = �
�
�

 (1 − �� − ��) �� + �� < 1
0 �. �.

, 

which is implemented and depicted in Figure 2.14 by using the persp function for plotting in 
three dimensions. 
 
epa <- function(x, y) ((x^2 + y^2) < 1) * 2/pi * (1 - x^2 - y^2) 
x <- seq(from = -1.1, to = 1.1, by = 0.05) 
 epavals <- sapply(x, function(a) epa(a, x)) 
persp(x = x, y = x, z = epavals, xlab = "x", ylab = "y", zlab = expression(K(x, y)), theta = -35, axes 
= TRUE, box = TRUE) 
 

 
Fig. 2.14. Epanechnikov kernel for a grid between (−1.1, −1.1) and (1.1,1.1). 

 
 
Our first illustration of enhancing a scatterplot with an estimated bivariate density will involve 
data from the Hertzsprung-Russell (H-R) diagram of the star cluster CYG OB1, calibrated 
according to Vanisma and De Greve (1972). The H-R diagram is the basis of the theory of stellar 
evolution and is essentially a plot of the energy output of stars as measured by the logarithm of 



their light intensity plotted against the logarithm of their surface temperature. Part of the data 
is shown in Table 2.1.  
 
Table 2.1: CYGOB1 data. Energy output and surface temperature of star cluster CYG OB1. 
 
 

 
 
logst<-c(4.37, 4.56, 4.26, 4.56, 4.30, 4.46, 3.84, 4.57, 4.26, 4.37, 3.49, 4.43, 4.48, 4.01, 4.29, 
4.42, 4.23, 4.42, 4.23, 3.49, 4.29, 4.29, 4.42, 4.49, 4.38, 4.42, 4.29, 4.38, 4.22, 3.48, 4.38, 
4.56, 4.45, 3.49, 4.23, 4.62, 4.53, 4.45, 4.53, 4.43, 4.38, 4.45, 4.50, 4.45, 4.55, 4.45, 4.42) 
logli<-c(5.23, 5.74, 4.93, 5.74, 5.19, 5.46, 4.65, 5.27, 5.57, 5.12, 5.73, 5.45, 5.42, 4.05, 4.26, 
4.58, 3.94, 4.18, 4.18, 5.89, 4.38, 4.22, 4.42, 4.85, 5.02, 4.66, 4.66, 4.90, 4.39, 6.05, 4.42, 
5.10, 5.22, 6.29, 4.34, 5.62, 5.10, 5.22, 5.18, 5.57, 4.62, 5.06, 5.34, 5.34, 5.54, 4.98, 4.50) 
CYGOB1<-data.frame(logst,logli) 
 



A scatterplot of the data enhanced by the contours of the estimated bivariate density, obtained 
with the function bkde2D()2 from the package KernSmooth, is shown in Figure 2.15.  
 
library("KernSmooth") 
CYGOB1d <- bkde2D(CYGOB1, bandwidth = sapply(CYGOB1, dpik)) 
plot(CYGOB1, xlab = "log surface temperature", ylab = "log light intensity") 
contour(x = CYGOB1d$x1, y = CYGOB1d$x2, z = CYGOB1d$fhat, add = TRUE) 

 
Fig. 2.15. Scatterplot of the log of light intensity and log of surface temperature for the stars in star cluster CYG OB1 showing 
the estimated bivariate density. 
 
 
The plot shows the presence of two distinct clusters of stars: the larger cluster consists of stars 
that have high surface temperatures and a range of light intensities, and the smaller cluster 
contains stars with low surface temperatures and high light intensities. The bivariate density 
estimate can also be displayed by means of a perspective plot rather than a contour plot, and 
this is shown in Figure 2.16.  
 
persp(x = CYGOB1d$x1, y = CYGOB1d$x2, z = CYGOB1d$fhat, 
 xlab = "log surface temperature", 
 ylab = "log light intensity", 
 zlab = "density") 

                                                           
2 The kernel is the standard bivariate normal density 



 
Fig. 2.16. Perspective plot of estimated bivariate density. 

 
This again demonstrates that there are two groups of stars. 
 
For our next example of adding estimated bivariate densities to scatterplots, we will use the 
body measurement data introduced in Chapter 1 (see Table 1.2), although there are rather too 
few observations on which to base the estimation. (The gender of each individual will not be 
used.) And in this case we will add the appropriate density estimate to each panel of the 
scatterplot matrix of the chest, waist, and hips measurements. The resulting plot is shown in 
Figure 2.17.  
 



 
Fig. 2.17. Scatterplot matrix of body measurements data showing the estimated bivariate densities on each panel. 
 
The waist/hips panel gives some evidence that there might be two groups in the data, which, of 
course, we know to be true, the groups being men and women. And the Waist histogram on the 
diagonal panel is also bimodal, underlining the two-group nature of the data. 

 

Multi Dimension 
Kernel density estimation can be easily generalized from univariate to multivariate data, in 
theory if not always in practice. The general form of the estimator is 

��(�) = �
� ��� �

 ∑ ������(� − ��)��
��� , 



where � = (��, … , ��)′, �� = (���, … , ���)′, � = 1, … , � are �-vectors; � is the bandwidth (or 
smoothing) � × � positive definite matrix and ��: ℝ� → ℝ is the kernel function.  
A popular technique for generating �� from a univariate kernel � is by using a product kernel, 

��(�) = ∏ �(��)�
��� . 

 

4. Stalactite plots 
 

In this section, we will describe a multivariate graphic, the stalactite plot, specially designed for 
the detection and identication of multivariate outliers. Like the chi-square plot for assessing 
multivariate normality, described in Chapter 1, the stalactite plot is based on the generalised 
distances of observations from the multivariate mean of the data. But here these distances are 
calculated from the means and covariances estimated from increasing sized subsets of the data. 
As mentioned previously when describing bivariate boxplots, the aim is to reduce the masking 
effects that can arise due to the innocence of outliers on the estimates of means and covariances 
obtained from all the data. The central idea of this approach is that, given distances using, say, m 
observations for estimation of means and covariances, the m+1 observations to be used for this 
estimation in the next stage are chosen to be those with the m+1 smallest distances. Thus an 
observation can be included in the subset used for estimation for some value of m but can later 
be excluded as m increases. Initially m is chosen to take the value q +1, where q is the number 
of variables in the multivariate data set because this is the smallest number allowing the 
calculation of the required generalised distances. The cutoff distance generally employed to 
identify an outlier is the maximum expected value from a sample of n random variables each 
having a chi-squared distribution on q degrees of freedom.  
 
 
 
plot(xyplot(SO2 ~ temp| cut(wind, 2))) 
 



 
 
pollution <- equal.count(SO2,4) 
plot(cloud(popul ~ temp * wind | pollution, panel.aspect = 0.9)) 
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The stalactite plot, is specifically designed for the detection and identification of multivariate 
outliers. This plot is based on the generalized distances of observations from the multivariate 
mean of the data. But here these distances are calculated from the means and covariances 
estimated from increasing sized subsets of the data. The stalactite plot graphically illustrates 
the evolution of the outliers as the size of the subset of observations used for estimation 
increases. We will now illustrate the application of the stalactite plot on the US cities air 
pollution data. The plot is shown in Figure 2.25. 
 
require(MVA) 
stalac (USairpollution) 
 



Initially most cities are indicated as outliers (a “*” in the plot), but as the number of 
observations on which the generalized distances are calculated is increased, the number of 
outliers indicated by the plot decreases. The plot clearly shows the outlying nature of a number 
of cities over nearly all values of �. The effect of masking is also clear; when all 41 observations 
are used to calculate the generalized distances, only observations Chicago, Phoenix, and 
Providence are indicated to be outliers. 
 



Fig. 2.25. Stalactite plot of US cities air pollution data. 


